scholarly journals Settlement Observations at Kars Bridge

1968 ◽  
Vol 5 (1) ◽  
pp. 28-45 ◽  
Author(s):  
W J Eden ◽  
H B Poorooshasb

A 26 ft. high approach fill was constructed in November 1959 for a bridge over the Rideau river near Kars, Ontario. The fill was placed over 50 ft. of Leda clay, the lower 30 ft. of which was extremely sensitive and compressible. Prior testing indicated that the preconsolidation pressure of the clay would be exceeded.Settlement gauges and piezometers under the fill have been observed since the start of construction. After 7½ years, 20 in. of settlement has occurred under the centre of the fill. Settlements are continuing at an appreciable rate although the excess pore water pressure has dissipated to a low level and is nearly constant through the clay layer.The field observations of settlement and pore water pressure are compared with values calculated and a closed form solution to the process of consolidation obtained by a heat balance integral technique and by considering the clay layer to be a rigid plastic.

1988 ◽  
Vol 25 (4) ◽  
pp. 831-839 ◽  
Author(s):  
E. Karl Sauer ◽  
E. A. Christiansen

Soft, intertill, glaciolacustrine clays are of concern for stability of slopes and foundations. An intertill clay deposit between 32 and 54 m below the surface was continuously cored. Index properties were determined for 46 samples and 10 samples were tested on the oedometer. Stratigraphic evidence indicates that the glaciolacustrine clay (Blaine Lake Member), lying between the till of the Sutherland and Saskatoon groups, was glaciated three times. However, preconsolidation pressures of this intertill clay show the degree of consolidation is less than 20% based on a total stress from an estimated ice thickness extrapolated from the Cypress Hills. This low preconsolidation pressure suggests there was insufficient time for dissipation of excess pore-water pressure created by thickening of the advancing glacier. Key words: preconsolidation pressure, excess pore-water pressure, glaciers, intertill clay.


1991 ◽  
Vol 28 (1) ◽  
pp. 62-73 ◽  
Author(s):  
K. Y. Lo ◽  
I. I. Inculet ◽  
K. S. Ho

A comprehensive experimental investigation on the electroosmotic strengthening of soft sensitive clay was performed to assess the effectiveness of the treatment and to study the mechanism of the process. A specially designed electroosmotic cell was developed to prevent gas accumulation near the electrodes, to allow better electrode-soil contact, and to improve the treatment efficiency. This apparatus also enables the monitoring of the generated negative pore-water pressure along the sample length, settlement, voltage distribution, and current variation during treatment. The investigation covered two different types of soil trimmed at different orientations: the vertically and horizontally trimmed overconsolidated Wallaceburg clay and the vertically trimmed slightly overconsolidated soft sensitive Gloucester (Leda) clay. Results of this study showed that the voltage distribution and induced negative pore pressure at equilibrium along the sample are linear with steady current flow across the sample, indicating that the electrode design in the electroosmosis test apparatus is efficient. The electroosmotic consolidation curve is similar to that of the conventional consolidation curve, and the preconsolidation pressure was increased by 51–88% with an applied voltage up to 6 V. The undrained shear strength increased to a maximum of 172%, and the moisture content decreased by 30%. The technique of electrode reversal is employed, and a relatively uniform strength increase between the electrodes is observed. Key words: electroosmosis, electroosmotic cell, soft sensitive clay, negative pore-water pressure, preconsolidation pressure, stress–strain behaviour.


2016 ◽  
Vol 53 (9) ◽  
pp. 1460-1473 ◽  
Author(s):  
Dharma Wijewickreme ◽  
Achala Soysa

The cyclic shear response of soils is commonly examined using undrained (or constant-volume) laboratory element tests conducted using triaxial and direct simple shear (DSS) devices. The cyclic resistance ratio (CRR) from these tests is expressed in terms of the number of cycles of loading to reach unacceptable performance that is defined in terms of the attainment of a certain excess pore-water pressure and (or) strain level. While strain accumulation is generally commensurate with excess pore-water pressure, the definition of unacceptable performance in laboratory tests based purely on cyclic strain criteria is not robust. The shear stiffness is a more fundamental parameter in describing engineering performance than the excess pore-water pressure alone or shear strain alone; so far, no criterion has considered shear stiffness to determine CRR. Data from cyclic DSS tests indicate consistent differences inherent in the patterns between the stress–strain loops at initial and later stages of cyclic loading; instead of relatively “smooth” stress–strain loops in the initial parts of loading, nonsmooth changes in incremental stiffness showing “kinks” are notable in the stress–strain loops at large strains. The point of pattern change in a stress–strain loop provides a meaningful basis to determine the CRR (based on unacceptable performance) in cyclic shear tests.


2011 ◽  
Vol 261-263 ◽  
pp. 1534-1538
Author(s):  
Yu Guo Zhang ◽  
Ya Dong Bian ◽  
Kang He Xie

The consolidation of the composite ground under non-uniformly distributed initial excess pore water pressure along depth was studied in two models which respectively considering both the radial and vertical flows in granular column and the vertical flow only in granular column, and the corresponding analytical solutions of the two models were presented and compared with each other. It shows that the distribution of initial excess pore water pressure has obvious influence on the consolidation of the composite ground with single drainage boundary, and the rate of consolidation considering the radial-vertical flow in granular column is faster than that considering the vertical flow only in granular column.


2012 ◽  
Vol 193-194 ◽  
pp. 1010-1013
Author(s):  
Shu Qing Zhao

The construct to precast pile in thick clayey soil can cause the accumulation of excess pore water pressure. The high excess pore pressure can make soil, buildings and pipes surrounded have large deflection, even make them injured. Combining with actual projects, this paper presents an in-situ model test on the changes of excess pore water pressure caused by precast pile construct. It is found that the radius of influence range for single pile driven is about 15m,the excess pore water pressure can reach or even exceed the above effective soil pressure, and there are two relatively stable stages.


2012 ◽  
Vol 446-449 ◽  
pp. 1621-1626 ◽  
Author(s):  
Yan Mei Zhang ◽  
Dong Hua Ruan

A practical saturated sand elastic-plastic dynamic constitutive model was developed on the base of Handin-Drnevich class nonlinear lag model and multidimensional model. In this model, during the calculation of loading before soil reaches yielding, unloading and inverse loading, corrected Handin-Drnevich equivalent nonlinear model was adopted; after soil yielding, based on the idea of multidimensional model, the composite hardening law which combines isotropy hardening and follow-up hardening, corrected Mohr-Coulomb yielding criterion and correlation flow principle were adopted. A fully coupled three dimension effective stress dynamic analysis procedure was developed on the base of this model. The seismic response of liquefaction foundation reinforced by stone columns was analyzed by the developed procedure. The research shows that with the diameter of stone columns increasing, the excess pore water pressure in soil between piles decreases; with the spacing of columns increasing, the excess pore water pressure increases. The influence of both is major in middle and lower level of composite foundation.


2011 ◽  
Vol 2011 ◽  
pp. 1-12
Author(s):  
Mohammed Y. Fattah ◽  
Kais T. Shlash ◽  
Nahla M. Salim

The problem of the proposed “Baghdad metro line” which consists of two routes of 32 km long and 36 stations is analyzed. The tunnel is circular in cross-section with a 5.9 m outer diameter. The finite element analyses were carried out using elastic-plastic and modified Cam clay models for the soil. The excavation has been used together with transient effects through a fully coupled Biot formulation. All these models and the excavation technique together with Biot consolidation are implemented into finite-element computer program named “Modf-CRISP” developed for the purpose of these analyses. The results indicate that there is an inward movement at the crown and this movement is restricted to four and half tunnel diameters. A limited movement can be noticed at spring line which reaches 0.05% of tunnel diameter, while there is a heave at the region below the invert, which reaches its maximum value of about 0.14% of the diameter and is also restricted to a region extending to 1.5 diameters. The effect of using reduced zone on excess pore water pressure and surface settlement (vertical and horizontal) was also considered and it was found that the excess pore water pressure increases while the settlement trough becomes deeper and narrower using reduced .


2011 ◽  
Vol 368-373 ◽  
pp. 2795-2803
Author(s):  
Heng Hu ◽  
Yan Li ◽  
Zhi Liang Dong ◽  
Yan Luo ◽  
Gong Xin Zhang

All the time, security control method of loading is an important research part in the surcharge preloading, which is directly related to safety of the construction process. Starting from the stress path, discussing the variation of excess pore water pressure and relationship between stress path and security, and bringing forward the control method with a safety factor Fs based on the stress path. By measuring the change of excess pore water pressure, the control method with a safety factor Fs can reflect quantitatively the security status of soil and achieve the purpose of the process control, finally the security control method including the safety factor of loading and speed control is put forward to monitor construction safety. The safety factor of loading Fs is verified and back analyzed with the finite-element software, getting the correction factor from 0.90 to 1.20.


Sign in / Sign up

Export Citation Format

Share Document