X-ray diffraction and solid-state 119Sn CP-MAS NMR studies of some triaryltin(IV) chlorides

2003 ◽  
Vol 81 (11) ◽  
pp. 1187-1195 ◽  
Author(s):  
Jordan M Geller ◽  
Ian S Butler ◽  
Denis FR Gilson ◽  
Frederick G Morin ◽  
Ivor Wharf ◽  
...  

The solid-state 119Sn cross-polarization (CP) magic angle spinning (MAS) NMR spectra of a series of triaryltin chlorides of the form Ar3SnCl have been acquired. The indirect spin-spin coupling constants (J(119Sn-35Cl)), quadrupolar-dipolar shifts (d(119Sn-35Cl)), and the 119Sn chemical shift tensors were extracted. For the spectrum of triphenyltin chloride (I) the validity of the first-order perturbation approximation was tested by comparing results of both the perturbation and cubic-equation approaches and a variable-temperature NMR study undertaken to investigate the influence of the previously reported molecular motion in the solid. The X-ray crystal structures of the tris(o-tolyl)tin chloride (II) and tris(p-tolyl)tin chloride (IV) complexes have been examined. They belong to the monoclinic and triclinic space groups P21/n and P[Formula: see text], respectively, which are different from the previously reported tris(m-tolyl)tin chloride (III) complex, which crystallizes in the space group R3 and has threefold molecular symmetry. The structures and NMR properties of the complexes with meta-substituents are quite different from those with ortho- or para-substituents having axially symmetric shift tensors with small spans and larger J values.Key words: aryltin chlorides, magic angle spinning NMR, tin-chlorine spin-spin coupling, 119Sn chemical shift tensor, crystal structure.

1999 ◽  
Vol 77 (11) ◽  
pp. 1962-1972
Author(s):  
Scott Kroeker ◽  
Roderick E Wasylishen

Direct NMR observation of copper-63/65 nuclei in solid K3Cu(CN)4 provides the first experimental example of anisotropic copper chemical shielding. Axially symmetric by virtue of the space group symmetry, the shielding tensor spans 42 ppm, with the greatest shielding when the unique axis is perpendicular to the applied magnetic field. The nuclear quadrupole coupling constant is also appreciable, CQ(63Cu) = -1.125 MHz, reflecting a deviation of the Cu(CN)43- anion from pure tetrahedral symmetry. Spin-spin coupling to 13C nuclei in an isotopically enriched sample is quantified by line-shape simulations of both 13C and 63/65Cu magic-angle spinning (MAS) NMR spectra to be 300 Hz. It is shown that this information is also directly available by 63/65Cu triple-quantum (3Q) MAS NMR. The relative merits of these three approaches to characterizing spin-spin couplings involving half-integer quadrupolar nuclei are discussed. Chemical shielding tensors for nitrogen-15 and carbon-13 are obtained from NMR spectra of non-spinning samples, and are compared to those of tetrahedral group 12 tetracyanometallates. Finally, 2J(63/65Cu,15N) detected in 15N MAS experiments are found to be 19 and 20 Hz for the two crystallographically distinct cyanide ligands.Key words: NMR, quadrupolar nucleus, chemical shielding tensor, multiple-quantum magic-angle spinning, metal cyanide, spin-spin coupling.


2016 ◽  
Vol 4 (34) ◽  
pp. 13183-13193 ◽  
Author(s):  
Ryohei Morita ◽  
Kazuma Gotoh ◽  
Mika Fukunishi ◽  
Kei Kubota ◽  
Shinichi Komaba ◽  
...  

We examined the state of sodium electrochemically inserted in HC prepared at 700–2000 °C using solid state Na magic angle spinning (MAS) NMR and multiple quantum (MQ) MAS NMR.


2000 ◽  
Vol 53 (12) ◽  
pp. 971 ◽  
Author(s):  
Eric W. Ainscough ◽  
Andrew M. Brodie ◽  
Peter C. Healy ◽  
Joyce M. Waters

The X-ray crystal structure determination of bis[-(phenylcyanamido)bis(triphenylphosphine)copper(I)], [{Cu(PPh3)2(C6H5NCN)}2], (1) is reported. The complex has a centrosymmetric dimeric structure with the phenylcyanamide ligands bridging the copper atoms in a -1,3-fashion. The structure is compared with that of the 4-methylphenylcyanamido complex, [{Cu(PPh3)2(4-MeC6H4NCN)}2] (2), and the differences observed in the Cu–P bond lengths compared with changes in the solid state 31P cross-polarization magic-angle spinning (CPMAS) spectra of the two complexes.


1996 ◽  
Vol 7 (7) ◽  
pp. 457-463 ◽  
Author(s):  
M. Bohner ◽  
J. LeMa�tre ◽  
A. P. LeGrand ◽  
J.-B. D'Espinose de la Caillerie ◽  
P. Belgrand

2017 ◽  
Vol 73 (3) ◽  
pp. 234-243 ◽  
Author(s):  
Nicolas J. Vigilante ◽  
Manish A. Mehta

We report an analysis of the 13C solid-state NMR chemical shift data in a series of four cocrystals involving two active pharmaceutical ingredient (API) mimics (caffeine and theophylline) and two diacid coformers (malonic acid and glutaric acid). Within this controlled set, we make comparisons of the isotropic chemical shifts and the principal values of the chemical shift tensor. The dispersion at 14.1 T (600 MHz 1H) shows crystallographic splittings in some of the resonances in the magic angle spinning spectra. By comparing the isotropic chemical shifts of individual C atoms across the four cocrystals, we are able to identify pronounced effects on the local electronic structure at some sites. We perform a similar analysis of the principal values of the chemical shift tensors for the anisotropic C atoms (most of the ring C atoms for the API mimics and the carbonyl C atoms of the diacid coformers) and link them to differences in the known crystal structures. We discuss the future prospects for extending this type of study to incorporate the full chemical shift tensor, including its orientation in the crystal frame of reference.


Sign in / Sign up

Export Citation Format

Share Document