Characterization of the conformational changes in recombinant human metallothioneins using ESI-MS and molecular modeling

2007 ◽  
Vol 85 (10) ◽  
pp. 898-912 ◽  
Author(s):  
Jayna Chan ◽  
Zuyun Huang ◽  
Ian Watt ◽  
Peter Kille ◽  
Martin J Stillman

Electrospray ionization mass spectrometry (ESI-MS) data and molecular modeling calculations were used to gain mechanistic, conformational, and domain-specific information from the acid-induced demetallation reactions of human metallothionein. The recombinant proteins studied were the single α- and β-rhMT-1a domains and the βα- and αβ-rhMT-1a two-domain species, based on the human metallothionein 1a sequence. Complete molecular models (MM3/MD) for all the fully metallated and demetallated species using a modified force field are reported for the first time. Basic residues that contribute to the ESI-MS charge states are identified from the molecular models. Demetallation took place under equilibrium conditions within a narrow pH range. For the two-domain proteins, these results support a demetallation mechanism involving the initial complete demetallation of one domain followed by the other for both βα-rhMT and αβ-rhMT. Based on the stability of the separate domains, the β domain is predicted to demetallate first in the two-domain rhMTs. Both the α domain and the β domain were observed to bind an excess of one Cd2+ ion. The metallated rhMT structures were shown to have very stable conformations, but only when fully metallated. Two or more conformations were observed at low pH in the ESI-MS data, which are interpreted as arising from the presence of structure, as opposed to a random coil, in the apo-rhMT. This is the first report of the existence of a structure in the two-domain metal-free apo-MT proteins. Only at extremely low pH does the structure open fully to give the highest charge distribution, which is associated with a random coil. Pre-existing structural features in the apo-MT would explain why the metallation reactions occur so rapidly.Key words: recombinant human metallothionein-1 (rhMT1), electrospray ionization mass spectrometry (ESI-MS), circular dichroism (CD), molecular mechanics/molecular dynamics (MM3/MD).




2020 ◽  
Author(s):  
Danye Qiu ◽  
Miranda S. Wilson ◽  
Verena B. Eisenbeis ◽  
Robert K. Harmel ◽  
Esther Riemer ◽  
...  

AbstractThe analysis of myo-inositol phosphates (InsPs) and myo-inositol pyrophosphates (PP-InsPs) is a daunting challenge due to the large number of possible isomers, the absence of a chromophore, the high charge density, the low abundance, and the instability of the esters and anhydrides. Given their importance in biology, an analytical approach to follow and understand this complex signaling hub is highly desirable. Here, capillary electrophoresis (CE) coupled to electrospray ionization mass spectrometry (ESI-MS) is implemented to analyze complex mixtures of InsPs and PP-InsPs with high sensitivity. Stable isotope labeled (SIL) internal standards allow for matrix-independent quantitative assignment. The method is validated in wild-type and knockout mammalian cell lines and in model organisms. SIL-CE-ESI-MS enables for the first time the accurate monitoring of InsPs and PP-InsPs arising from compartmentalized cellular synthesis pathways, by feeding cells with either [13C6]-myo-inositol or [13C6]-D-glucose. In doing so, we uncover that there must be unknown inositol synthesis pathways in mammals, highlighting the unique potential of this method to dissect inositol phosphate metabolism and signalling.



2011 ◽  
Vol 64 (6) ◽  
pp. 705 ◽  
Author(s):  
Jennifer L. Beck

Many anti-cancer drugs function by binding non-covalently to double-stranded (ds) DNA. Electrospray ionization mass spectrometry (ESI-MS) has emerged over the past decade as a sensitive technique for the determination of stoichiometries and relative binding affinities of DNA–ligand interactions. The chromosome contains nucleotide sequences, for example, guanosine-rich regions, that predispose them to the formation of higher order structures such as quadruplex DNA (qDNA). Sequences that form qDNA are found in the telomeres. The proposal that ligands that stabilize qDNA might interfere with the activity of telomerase in cancer cells has stimulated the search for ligands that are selective for qDNA over dsDNA. The insights gained from the development of ESI-MS methods for analysis of non-covalent dsDNA–ligand complexes are now being applied in the search for qDNA-selective ligands. ESI-MS is a useful first-pass screening technique for qDNA-binding ligands. This short review describes some experimental considerations for ESI-MS analysis of DNA–ligand complexes, briefly addresses the question of whether non-covalent DNA–ligand complexes are faithfully transferred from solution to the gas phase, discusses ion mobility mass spectrometry as a technique for probing this issue, and highlights some recent ESI-MS studies of qDNA-selective ligands.



Sign in / Sign up

Export Citation Format

Share Document