Quasi-classical trajectory study of the O(1D) + HF reaction dynamics on 11A′ potential energy surface

2011 ◽  
Vol 89 (6) ◽  
pp. 650-656 ◽  
Author(s):  
Juan Zhao

The quasi-classical trajectory (QCT) calculations for the title reaction were carried out using the recently developed, accurate potential energy surface (PES) of the [Formula: see text] singlet state of the OHF system The integral cross section and the product rotational alignment factor [Formula: see text] were calculated as a function of collision energy. In addition, I discovered the effect of isotopic substitution on stereodynamics for the title reaction, and the influence of the rotation excitation of the reagent on stereodynamics is also presented. Both the scalar and vector properties of the reaction O(1D) + HF → OH + F(2P) are studied in this paper. It was found that the reaction is mainly controlled by an indirect reaction mechanism, and that the deep noncollinear insertion HOF well has a great impact on the dynamics of the reaction. The conclusions drawn in this paper will draw from references to similar reactions, and provide a theoretical foundation for related experiments.

2014 ◽  
Vol 92 (3) ◽  
pp. 250-256 ◽  
Author(s):  
Dan Zhao ◽  
Xiaohu He ◽  
Wei Guo

The stereodynamics calculation of F + HO → HF + O(1D) was carried out using the quasi-classical trajectory method on the 11A′ potential energy surface provided by Gomez-Carrasco et al. (Chem. Phys. Lett. 2007, 435, 188). The effect of the collision energy, isotopic substitution, and different initial ro-vibrational states on the reaction is discussed. It is found that for the initial ground state of HO (v = 0, j = 0), the degree of the forward scattering and the product polarizations remarkably change as the collision energy varies. Isotopic effect leads to the increase of alignment and decrease of orientation of product rotational angular momentum. Moreover, the P(θr) distribution and P(φr) distribution change noticeably by varying the initial vibrational number. The initial vibrational excitation plays a more important role in the enhancement of alignment and orientation distribution of j′ for the title reaction. Although the influence of the initial rotational excitation effect on the aligned and oriented distribution of product is not stronger than that of the initial vibrational excitation effect, the initial rotational excitation makes the alignment of the product rotational angular momentum decrease to some extent. The probabilities show that the reactivity of the title reaction strongly depends on the initial vibrational state.


2011 ◽  
Vol 10 (04) ◽  
pp. 401-410
Author(s):  
TAO WANG ◽  
XIANGYANG MIAO

The stereodynamics of the title reaction based on the ground 2A′ potential energy surface (PES) has been investigated using the method of the quasi-classical trajectory (QCT) at different collision energies (23 kcal/mol, 35 kcal/mol and 46 kcal/mol). The vector properties of the angular momentum (described by the distribution of K - J′P(θr), the dihedral angle distribution of K - K′ - J′P(φr) and the angular distribution P(θr, ϕr)) and the four PDDCSs [(2π/σ)(dσ00/dωt), (2π/σ)(dσ20/dωt), (2π/σ)(dσ22+/dωt), (2π/σ)(dσ21-/dωt)] of the product LiF at each collision energy have been presented, respectively. Further, the collision energy effects on the behavior of the product LiF have been discussed and studied.


2020 ◽  
Vol 22 (45) ◽  
pp. 26330-26339
Author(s):  
Xiaoxiao Lu ◽  
Bina Fu ◽  
Dong H. Zhang

The reaction dynamics and kinetics of OH + HO2 → H2O + O2 on the singlet state were revealed by theory, based on an accurate full-dimensional PES.


2017 ◽  
Vol 95 (12) ◽  
pp. 1219-1224 ◽  
Author(s):  
Lu-Lu Zhang ◽  
Shou-Bao Gao ◽  
Yu-Zhi Song ◽  
Da-Guang Yue ◽  
Guo-Meng Chen ◽  
...  

The quasi-classical trajectory calculations are carried out to investigate the isotopic substitution effect on title reactions based on the recently developed, accurate potential energy surface of the HCS(X2[Formula: see text]) (Song, Zhang, et al. Sci. Rep. 6, 37734 (2016)). The total integral cross sections (ICSs) and vibrational state resolved ICSs are obtained for C + SH(D, T) → H(D, T) + CS reactions. In addition, differential cross sections and two angle distribution functions P(θr), P([Formula: see text]) at different collision energies are investigated. It is found that the peaks of P(θr) and P([Formula: see text]) become lower with the reagent molecule SH turning into SD and ST.


2011 ◽  
Vol 10 (01) ◽  
pp. 75-91 ◽  
Author(s):  
HERUN YANG ◽  
ZUOYE LIU ◽  
SHAOHUA SUN ◽  
LU LI ◽  
HONGCHUAN DU ◽  
...  

The quasi-classical trajectory (QCT) method and the 12A′ potential energy surface (PES) [Boggio-Pasqua et al., Phys Chem Chem Phys2:1693, 2000] have been employed to study the stereo-dynamics of the reaction C + CH (v = 0, j) → C2 + H at different collision energies over the range of 0.01–0.6 eV and for different rotational quantum number j = 0 - 3. The reactive total cross section with initial revibrational state of v = 0 and j = 0 as a function of collision energy is presented and compared with the quantum mechanics results. The forward-backward asymmetry phenomenon has been found in the angular distribution of the products. The calculated distribution of P(θr) indicates a strong product alignment perpendicular to k, but this kind of product alignment is found to be rather insensitive to the collision energy. The calculated distribution of P(ϕr) revealed that at low collision energy the products tend to be oriented along the negative direction of the y-axis, while at high collision energy, this product orientation tends to be pointed to the positive direction of the y-axis. Such product orientation tends generally to become stronger with the increase of collision energy. Further, product polarization (i.e. orientation and alignment) becomes weak with high rotational excitation of the reagent CH molecule.


2010 ◽  
Vol 09 (05) ◽  
pp. 919-924 ◽  
Author(s):  
XIAN-FANG YUE ◽  
JIE CHENG ◽  
HONG ZHANG

Quasi-classical trajectory (QCT) calculations are carried out for the title reactions on the potential energy surface (PES) of Ho et al.1 Our calculated integral cross-section values have been compared with the recent two quantum mechanics (QM) ones: they are close to those of one QM calculation in the high collision energy range, but they approach to another one in the low collision energy range. The product rotational alignments 〈P2 (J' ⋅ K)〉 have also been calculated.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 994
Author(s):  
Joaquin Espinosa-Garcia ◽  
Cipriano Rangel ◽  
Moises Garcia-Chamorro ◽  
Jose C. Corchado

Based on a combination of valence-bond and molecular mechanics functions which were fitted to high-level ab initio calculations, we constructed an analytical full-dimensional potential energy surface, named PES-2020, for the hydrogen abstraction title reaction for the first time. This surface is symmetrical with respect to the permutation of the three hydrogens in ammonia, it presents numerical gradients and it improves the description presented by previous theoretical studies. In order to analyze its quality and accuracy, stringent tests were performed, exhaustive kinetics and dynamics studies were carried out using quasi-classical trajectory calculations, and the results were compared with the available experimental evidence. Firstly, the properties (geometry, vibrational frequency and energy) of all stationary points were found to reasonably reproduce the ab initio information used as input; due to the complicated topology with deep wells in the entrance and exit channels and a “submerged” transition state, the description of the intermediate complexes was poorer, although it was adequate to reasonably simulate the kinetics and dynamics of the title reaction. Secondly, in the kinetics study, the rate constants simulated the experimental data in the wide temperature range of 25–700 K, improving the description presented by previous theoretical studies. In addition, while previous studies failed in the description of the kinetic isotope effects, our results reproduced the experimental information. Finally, in the dynamics study, we analyzed the role of the vibrational and rotational excitation of the CN(v,j) reactant and product angular scattering distribution. We found that vibrational excitation by one quantum slightly increased reactivity, thus reproducing the only experimental measurement, while rotational excitation strongly decreased reactivity. The scattering distribution presented a forward-backward shape, associated with the presence of deep wells along the reaction path. These last two findings await experimental confirmation.


Sign in / Sign up

Export Citation Format

Share Document