Dynamics and kinetics of the OH + HO2 → H2O + O2 (1Δg) reaction on a global full-dimensional singlet-state potential energy surface

2020 ◽  
Vol 22 (45) ◽  
pp. 26330-26339
Author(s):  
Xiaoxiao Lu ◽  
Bina Fu ◽  
Dong H. Zhang

The reaction dynamics and kinetics of OH + HO2 → H2O + O2 on the singlet state were revealed by theory, based on an accurate full-dimensional PES.

2011 ◽  
Vol 89 (6) ◽  
pp. 650-656 ◽  
Author(s):  
Juan Zhao

The quasi-classical trajectory (QCT) calculations for the title reaction were carried out using the recently developed, accurate potential energy surface (PES) of the [Formula: see text] singlet state of the OHF system The integral cross section and the product rotational alignment factor [Formula: see text] were calculated as a function of collision energy. In addition, I discovered the effect of isotopic substitution on stereodynamics for the title reaction, and the influence of the rotation excitation of the reagent on stereodynamics is also presented. Both the scalar and vector properties of the reaction O(1D) + HF → OH + F(2P) are studied in this paper. It was found that the reaction is mainly controlled by an indirect reaction mechanism, and that the deep noncollinear insertion HOF well has a great impact on the dynamics of the reaction. The conclusions drawn in this paper will draw from references to similar reactions, and provide a theoretical foundation for related experiments.


2019 ◽  
Vol 21 (23) ◽  
pp. 12667-12675 ◽  
Author(s):  
Yang Liu ◽  
Mengna Bai ◽  
Hongwei Song ◽  
Daiqian Xie ◽  
Jun Li

The quasi-classical trajectory predicts the rate coefficient of the OH + HO2→ H2O + O2reaction based on a full dimensional accurate PIP-NN PES, which is fit to 108 000 points calculated at the CCSD(T)-F12a/AVTZ level.


2021 ◽  
Vol 23 (10) ◽  
pp. 6141-6153
Author(s):  
Jianwei Cao ◽  
Yanan Wu ◽  
Haitao Ma ◽  
Zhitao Shen ◽  
Wensheng Bian

Quantum dynamics and ring polymer molecular dynamics calculations reveal interesting dynamical and kinetic behaviors of an endothermic complex-forming reaction.


2018 ◽  
Vol 20 (40) ◽  
pp. 25951-25958 ◽  
Author(s):  
Octavio Roncero ◽  
Alexandre Zanchet ◽  
Alfredo Aguado

Is the rise of the rate constant measured in laval expansion experiments of OH with organic molecules at low temperatures due to the reaction between the reactants or due to the formation of complexes with the buffer gas?


Author(s):  
Tomas Baer ◽  
William L. Hase

Properties of potential energy surfaces are integral to understanding the dynamics of unimolecular reactions. As discussed in chapter 2, the concept of a potential energy surface arises from the Born-Oppenheimer approximation, which separates electronic motion from vibrational/rotational motion. Potential energy surfaces are calculated by solving Eq. (2.3) in chapter 2 at fixed values for the nuclear coordinates R. Solving this equation gives electronic energies Eie(R) at the configuration R for the different electronic states of the molecule. Combining Eie(R) with the nuclear repulsive potential energy VNN(R) gives the potential energy surface Vi(R) for electronic state i (Hirst, 1985). Each state is identified by its spin angular momentum and orbital symmetry. Since the electronic density between nuclei is different for each electronic state, each state has its own equilibrium geometry, sets of vibrational frequencies, and bond dissociation energies. To illustrate this effect, vibrational frequencies for the ground singlet state (S0) and first excited singlet state (S1) of H2CO are compared in table 3.1. For a diatomic molecule, potential energy surfaces only depend on the internuclear separation, so that a potential energy curve results instead of a surface. Possible potential energy curves for a diatomic molecule are depicted in figure 3.1. Of particular interest in this figure are the different equilibrium bond lengths and dissociation energies for the different electronic states. The lowest potential curve is referred to as the ground electronic state potential. The primary focus of this chapter is the ground electronic state potential energy surface. In the last section potential energy surfaces are considered for excited electronic states. A unimolecular reactant molecule consisting of N atoms has a multidimensional potential energy surface which depends on 3N-6 independent coordinates. For the smallest nondiatomic reactant, a triatomic molecule, the potential energy surface is four-dimensional (three independent coordinates plus the energy). Since it is difficult, if not impossible, to visualize surfaces with more than three dimensions, methods are used to reduce the dimensionality of the problem in portraying surfaces. In a graphical representation of a surface the potential energy is depicted as a function of two coordinates with constraints placed on the remaining 3N-8 coordinates.


2014 ◽  
Vol 140 (23) ◽  
pp. 234301 ◽  
Author(s):  
Chunfang Zhang ◽  
Mingkai Fu ◽  
Zhitao Shen ◽  
Haitao Ma ◽  
Wensheng Bian

Sign in / Sign up

Export Citation Format

Share Document