PRESSURE EFFECT AND MECHANISM IN ACID CATALYSIS: VIII. HYDROLYSIS OF ACETAMIDE AND BENZAMIDE

1961 ◽  
Vol 39 (5) ◽  
pp. 1101-1108 ◽  
Author(s):  
A. R. Osborn ◽  
T. C-W. Mak ◽  
E. Whalley

The effect of pressures up to 3 kbar on the rate of the acid-catalyzed hydrolysis of acetamide and benzamide in both dilute and concentrated perchloric acid has been measured. The volumes of activation in dilute acid are consistent with a transition state that is not highly polar. It follows from this that if the attacking water molecule adds to the amidium ion then the reactive amidium ion is the O-protonated form, and if the attacking water molecule substitutes then the reactive amidium ion is the N-protonated form.The volume of activation for acetamide in concentrated acid provides no additional information about the mechanism. That for benzamide in concentrated acid is tentatively interpreted as favoring the O-protonated benzamidium ion as the reactive ion.


1977 ◽  
Vol 55 (16) ◽  
pp. 3050-3057 ◽  
Author(s):  
Tomasz A. Modro ◽  
Keith Yates ◽  
Françoise Beaufays

The transition-state activity coefficient [Formula: see text] approach has been applied to the acid-catalyzed hydrolysis of benzamide and its N-alkyl derivatives. For all systems (with the exception of the N-tert-butyl derivative which reacts via carbon–nitrogen bond cleavage) a uniform type of medium dependence of [Formula: see text] is observed. The reaction shows a pronounced destabilization of S≠ over the whole region of acidity studied, practically identical to that found for the AAc-2 type of ester hydrolysis. This is interpreted in terms of an AoT2 mechanism of amide hydrolysis, that is the rate-determining formation of the oxonium-type tetrahedral intermediate from the O-protonated form of substrate conjugate acid.



1961 ◽  
Vol 39 (5) ◽  
pp. 1094-1100 ◽  
Author(s):  
A. R. Osborn ◽  
E. Whalley

The effect of pressures up to 3 kbar on the rate of the acid-catalyzed hydrolysis of methyl, ethyl, and t-butyl acetates in dilute aqueous acid and of ethyl acetate in concentrated hydrochloric acid has been measured. The volume of activation for t-butyl acetate is zero within experimental error, showing that the mechanism is unimolecular. Those for methyl and ethyl acetates are near –9 cm3mole−1 in both dilute and concentrated acid. We deduce from this that the mechanism is the same in 9.2-M hydrochloric acid as in dilute acid, that the transition state is not highly polar, and that if the proton in the reactive protonated ester is on the carbonyl oxygen then the attacking water molecule adds, and if the proton is on the ether oxygen then the attacking water molecule substitutes.



1959 ◽  
Vol 37 (4) ◽  
pp. 788-794 ◽  
Author(s):  
J. Koskikallio ◽  
E. Whalley

The acid-catalyzed hydrolysis of diethyl ether has been measured in the temperature range 120–160 °C at low acid concentrations; the entropy of activation is −9.0 ± ~2.5 cal deg−1 mole−1. The effect of pressures up to 3000 atm has been measured at 161.2 °C; the volume of activation at 1 atm is −8.5 ± ~2 cm3 mole−1. These two results show that the slow step is bimolecular. The rate in concentrated acids was measured at 119 °C; the rate was much more nearly proportional to the acidity function h0 than to concentration of acid. This is contrary to the predictions of the Zucker–Hammett hypothesis, which is therefore not valid for the hydrolysis of diethyl ether.



1959 ◽  
Vol 37 (8) ◽  
pp. 1360-1366 ◽  
Author(s):  
J. Koskikallio ◽  
D. Pouli ◽  
E. Whalley

The spontaneous and the acid-catalyzed hydrolyses of acetic anhydride have been measured as a function of temperature over the range 0 to 40 °C, as a function of pressure over the range 0 to 3 kb at 0 °C, and as a function of solvent over the range 0 to 70.3% w/w acetone–water at 0 °C. The results are discussed with reference to the mechanisms of the hydrolyses. The volume and entropy of activation of the acid-catalyzed hydrolysis are −17.1 ± ~1.3 cm3 mole−1 and ~ −20 cal deg−1 mole−1, showing that the mechanism[Formula: see text]suggested because the rate was proportional to Hammett's h0, is not correct. It follows that the Zucker–Hammett hypothesis is invalid for this reaction, as we have shown previously for other reactions, and hence that it does not provide a valid method of distinguishing between the A-1 and A-2 mechanisms.



1971 ◽  
Vol 49 (14) ◽  
pp. 2455-2459 ◽  
Author(s):  
Y. Y. Lim ◽  
A. R. Stein

The acid-catalyzed hydrolysis of methyl isonitrile has been examined. The initial hydrolysis product is N-methylformamide which is further hydrolyzed to methyl amine and formic acid at a much slower rate. The hydrolysis to N-methylformamide is pseudo-first order in methyl isonitrile and shows a linear rate dependence on concentration of general (buffer) acid at fixed pH. The significance of general acid-catalysis in terms of the mechanism of the hydrolysis is considered and taken as evidence for carbon protonation rather than nitrogen protonation as the initiating step.



1975 ◽  
Vol 97 (18) ◽  
pp. 5223-5231 ◽  
Author(s):  
Robert A. McClelland ◽  
Tomasz A. Modro ◽  
Malcolm F. Goldman ◽  
Keith Yates






Sign in / Sign up

Export Citation Format

Share Document