Electrical conductivities of quaternary ammonium salts in acetone.: Part III. Ion-pair formation

1968 ◽  
Vol 46 (12) ◽  
pp. 2005-2011 ◽  
Author(s):  
W. A. Adams ◽  
K. J. Laidler

The ion-pair dissociation constants determined from a Shedlovsky analysis of conductivity (see Part I) were used to calculate the enthalpy, the internal energy at constant volume, the entropy, and the volume of dissociation of tetramethylammonium iodide, tetraethylammonium iodide, and tetra-n-propylammonium iodide ion pairs in acetone solution. The sign and magnitude of these parameters over the range of conditions investigated, temperature 25 to 55 °C and atmospheric to 1.1 kbar pressure, indicated that the free ions in acetone solution are extensively solvated and that, depending on the conditions, solvent-shared or solvent-separated ion pairs are formed.

1968 ◽  
Vol 46 (12) ◽  
pp. 1977-1988 ◽  
Author(s):  
W. A. Adams ◽  
K. J. Laidler

The equivalent conductivities of tetramethylammonium iodide, tetraethylammonium iodide, and tetra-n-propylammonium iodide in acetone solution were determined at concentrations from 1 to 10 × 10−4 mole/liter and at temperatures of 25 to 55 °C and pressures from atmospheric to 1.1 kbar. The concentration dependence of the equivalent conductivities was analyzed by the Shedlovsky method. Limiting equivalent conductivities and ion-pair dissociation constants are tabulated.


2018 ◽  
Vol 21 ◽  
pp. 160-170 ◽  
Author(s):  
Bahar Darsazan ◽  
Alireza Shafaati ◽  
Afshin Zarghi ◽  
Seyed Alireza Mortazavi

Purpose: Adefovir is an antiviral drug that exhibits high hydrophilic properties and negligible bioavailability (less than 12%). It is only applied in the form of the ester prodrug adefovir dipivoxil (ADV). The oral bioavailability of ADV is limited (32% to 45%) by its low permeability (Class 3) and biological conversion of the prodrug to adefovir. Ion-pair formation is considered as an alternative approach to a covalent prodrug (ADV) to enhance intestinal permeation of adefovir. Methods: The effect of various counter-ions (anionic, cationic and two quaternary ammonium salts) on the lipophilicity of adefovir was investigated by means of the n-octanol/buffer partitioning system, an in vitro transport model (PAMPA) and a biological membrane (everted gut sac). Results: Quaternary ammonium salts, cetylpyridinium chloride (CPC) and cetrimide enhanced the lipophilicity of adefovir 136- and 87-fold, respectively. The apparent permeability of adefovir in combination with CPC (counter-ion) was 2.5-fold greater than ADV permeability in the PAMPA model. The apparent permeability of adefovir-CPC (counter-ion) was 1.3-fold greater than that of adefovir dipivoxil permeability in a biologic membrane (everted gut sac). Conclusion: These results suggest that the adefovir-CPC ion-paired system has potential for improving the permeation of adefovir across the intestinal membrane. This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page.


1995 ◽  
Vol 124 (1) ◽  
pp. 45-53 ◽  
Author(s):  
S. G. Sommer ◽  
S. Husted

SUMMARYSlurry pH is of great importance for the regulation of ammonia volatilization from livestock slurry, and therefore more knowledge of the buffer system controlling pH is urgently needed for modelling ammonia losses from stored and surface-applied slurry. The composition of 17 different Danish cattle, pig and biogas plant-digested slurries was studied. The results were used to describe the main buffer components in the slurries, and to discover the most important chemical components necessary for modelling slurry pH. The results showed that the pH of slurry was mainly controlled by the species NH4+/NH3, CO2/HCO3-/CO32- and CH3COOH/CH3COO-, and that ion pair formation did not change the ionic balance significantly. There were only trace amounts of Ca2+, Mg2+ and inorganic phosphates in solution due to precipitation of CaCO3 (calcite) and MgNH4PO4.6H2O (struvite). Measured electrical conductivities were found to be strongly correlated with the calculated ionic strength.


1977 ◽  
Vol 30 (4) ◽  
pp. 741 ◽  
Author(s):  
DG Oakenfull ◽  
DE Fenwick

.In the mixed solvent, 0.1 mole fraction ethanol-water, long-chain decyltrimethylammonium carboxylates form ion pairs. Ion-pair association constants (and hence the free energy of ion-pair formation) can be measured conductometrically. It is possible to separate the hydrophobic from the electrostatic contribution to the free energy of ion-pair formation by systematically varying the hydrocarbon chain length. We report measurements of the free energy of hydrophobic interaction (ΔG°HI) over the temperature range 278-328 K. The value of ΔG°HI becomes more negative (stronger hydrophobic interaction) with increasing temperature. The temperature coefficient of ΔG°HI was used to calculate the enthalpy (ΔH°HI) and entropy (ΔS°HI) of hydrophobic interaction. At low temperature the entropic contribution to the free energy is the larger but ΔH°HI, dominates at temperatures above c. 324 K. The volume change of hydrophobic interaction was similarly estimated from the volume change of ion-pair formation. We obtained values of apparent molar volume of the decyltrimethylammonium carboxylates (over a range of concentrations) from very precise density measurements. These could then be combined with the appropriate ion-pair association constant (from the conductance measurements) to give the partial molar volumes of the free ions and the ion pair. Hydrophobic interaction was found to be accompanied by a substantial increase in volume amounting to 10.2 ± 0.3 ml mol-1 for each pair of interacting methylene groups. Our results support the view that hydrophobic interaction occurs with a further ordering of water molecules over and above that which exists in the hydrophobic hydration layer surrounding an isolated hydrophobic molecule.


1995 ◽  
Vol 50 (11) ◽  
pp. 1699-1716
Author(s):  
Andreas John ◽  
Hans Bock

Semiquinone radical anions are prototype compounds for contact ion pair formation with metal counter cations. In order to investigate the still open question whether bulky alkyl groups can sterically interfere, diphenoquinone derivatives O=C(RC=CH)2C=C(HC=CR)2C=O with R = C(CH3)3, CH(CH3)2 and CH3 have been selected and the following ESR/ENDOR results are obtained for the alkaline metal cations: The tetrakis(tert-butyl)-substituted radical anion only adds Li⊕ and Na⊕, while K⊕ forms no ion pair. The 3,3ʹ,5,5ʹ-tetra(isopropyl)diphenoquinone radical anion is accessible to all cations Me⊕, although Rb⊕ and Cs⊕ seem to be present solvent-separated in solution. The tetramethyl-substituted radical anion unfortunately polymerizes rapidly. Additional information concerns the ESR/ENDOR proof for ion triple radical cation formation [Li⊕ M•⊖Li⊕]•⊕, or the difference in the coupling constants upon Me⊕ docking at one δ⊖O=C group, suggesting that about 87% of the spin density is located in the cation-free molecular half of the diphenoquinone radical anion. Based on the wealth of ESR/ENDOR information, crystallization of the contact ion pairs and their structural characterization should be attempted.


1982 ◽  
Vol 60 (14) ◽  
pp. 1828-1831 ◽  
Author(s):  
Roberto Aruga

Enthalpy of association of hexacyanoferrate(III) ion with Mg(II), Ca(II), Sr(II), and Ba(II) cations has been determined by direct calorimetry. Using the equilibrium constants, Gibbs function and entropy were also obtained. Measurements were carried out in aqueous medium at 25 °C and ionic strength I = 0.1 mol L−1. Examination of the thermodynamic quantities obtained and calculation of the distance of closest approach between cation and anion show the presence of different desolvation processes for the metals studied. More particularly, solvent-separated ion pairs in the case of magnesium and contact pairs in the case of barium seem to be present. The presence of desolvation processes is uncertain for calcium and strontium. The ΔH0 and ΔS0 values show also an important influence from solvent-destructuring processes on ion pair formation.


Sign in / Sign up

Export Citation Format

Share Document