Sterically Hindered Aromatic Compounds. VI. A Remote ε-Deuterium Kinetic Isotope Effect in the Solvolysis of Perdeutero-2,4,6-tri-tert-butylbenzyl Chloride

1975 ◽  
Vol 53 (21) ◽  
pp. 3171-3174 ◽  
Author(s):  
L. Ross C. Barclay ◽  
John R. Mercer ◽  
Peter J. MacAulay

2,4,6-Tri-tert-butylbenzyl chloride deuterated at the three tert-butyl groups was synthesized. Conductimetric solvolysis studies of the normal and perdeutero-2,4,6-tri-tert-butylbenzyl chloride at 30.06 °C in 80% ethanol–water provides evidence for an inverse remote ε-deuterium isotope effect, kH/kD = 0.873−0.874. Under the same conditions the α-deuterium isotope effect was kH/kαD = 1.166 per deuterium, indicative of limiting solvolytic behavior. The remote ε-deuterium isotope effect for the perdeutero compound is discussed in terms of the inductive effect of deuterium and steric effects on the transition state conformation.

1960 ◽  
Vol 38 (11) ◽  
pp. 2171-2177 ◽  
Author(s):  
K. T. Leffek ◽  
J. A. Llewellyn ◽  
R. E. Robertson

The secondary β-deuterium isotope effects have been measured in the water solvolytic reaction of alkyl halides and sulphonates for primary, secondary, and tertiary species. In every case the kinetic isotope effect was greater than unity (kH/kD > 1). This isotope effect may be associated with varying degrees of hyperconjugation or altered non-bonding intramolecular forces. The experiments make it difficult to decide which effect is most important.


2010 ◽  
Vol 10 (7) ◽  
pp. 3455-3462 ◽  
Author(s):  
E. J. K. Nilsson ◽  
V. F. Andersen ◽  
H. Skov ◽  
M. S. Johnson

Abstract. The pressure dependence of the relative photolysis rate of HCHO vs. HCDO has been investigated for the first time, using a photochemical reactor at the University of Copenhagen. The dissociation of HCHO vs. HCDO using a UVA lamp was measured at total bath gas pressures of 50, 200, 400, 600 and 1030 mbar. The products of formaldehyde photodissociation are either H2 + CO (molecular channel) or HCO + H (radical channel), and a photolysis lamp was chosen to emit light at wavelengths that greatly favor the molecular channel. The isotope effect in the dissociation, kHCHO/kHCDO, was found to depend strongly on pressure, varying from 1.1 + 0.15/−0.1 at 50 mbar to 1.75±0.10 at 1030 mbar. The results can be corrected for radical channel contribution to yield the kinetic isotope effect for the molecular channel; i.e. the KIE in the production of molecular hydrogen. This is done and the results at 1030 mbar are discussed in relation to previous studies at ambient pressure. In the atmosphere the relative importance of the two product channels changes with altitude as a result of changes in pressure and actinic flux. The study demonstrates that the δD of photochemical hydrogen produced from formaldehyde will increase substantially as pressure decreases.


1979 ◽  
Vol 57 (6) ◽  
pp. 669-672 ◽  
Author(s):  
Arnold Jarczewski ◽  
Przemyslaw Pruszynski ◽  
Kenneth T. Leffek

The proton transfer reaction between 2,4,6-trinitrotoluene and 1,1′,3,3′-tetramethylguanidine in dimethylformamide solvent shows a large primary deuterium isotope effect, kH/kD = 24.3 at 0 °C and 16.9 at 20 °C. The enthalpy of activation difference (ΔHD≠ − ΔHH≠) = 2.6 ± 0.4 kcal mol−1 and the entropy of activation difference (ΔSD≠ − ΔSH≠) = 3.4 ± 1.3 cal mol−1 K−1. This isotope effect, when fitted to Bell's equation, indicates that there is a considerable contribution to this reaction from tunnelling of the proton through the potential energy barrier.


Sign in / Sign up

Export Citation Format

Share Document