Through-space or proximate 19F,19F and 19F,1H spin–spin coupling constants in some benzenesulfonyl fluoride derivatives

1976 ◽  
Vol 54 (22) ◽  
pp. 3564-3568 ◽  
Author(s):  
William J. E. Parr ◽  
Ted Schaefer

The analysis of the fluorine and proton magnetic resonance spectra of 2,4,6-trimethylbenzenesulfonyl fluoride and of 2,5-difluorobenzenesulfonyl fluoride yields the signs and magnitudes of the spin–spin coupling constants containing a through-space component. The coupling between the fluorine nucleus and the methyl protons over five bonds is +1.9 Hz, opposite in sign to the −3.1 Hz observed for the corresponding coupling in 2,6-dimethylbenzoyl fluoride. The difference of 5 Hz is possibly a consequence of the different conformational preference of the SO2F and COF substituents. The coupling over four bonds between the fluorine nucleus on the side chain and that on the ring is +11.6 Hz in 2,5-difluorobenzenesulfonyl fluoride. It is argued that this value indicates a preference of the S—F bond for a plane lying, on average, nearly perpendicular to the benzene ring. Similar indications are noted for pentafluorobenzenesulfonyl fluoride and for pentafluorobenzenesulfinyl fluoride.

1971 ◽  
Vol 49 (12) ◽  
pp. 2033-2036 ◽  
Author(s):  
H. M. Hutton ◽  
J. B. Rowbotham ◽  
B. H. Barber ◽  
T. Schaefer

In solution the 2-fluoro-5-chloro-, 2-fluoro-6-chloro-3-nitro-, 2-fluoro-6-chloro-5-nitro-, and 2,4,5-trichloro-benzalchlorides prefer conformations in which the C— bond of the side-chain lies in the plane of the aromatic ring. This C—H bond eclipses that ortho C—X bond (X = H, F, Cl) in which X is smaller than Y = H, F, Cl in the C—Y bond, also ortho to the dichloromethyl group. The long-range spin–spin coupling constants between the proton in the side-chain and the ring protons or fluorine nucleus are stereospecific. In particular, the coupling over four bonds between the side-chain proton and the ring fluorine is −0.3 Hz when the C—H and C—F bonds are arranged cis to each other but is −2.5 Hz when these bonds have a transoid planar arrangement.


1977 ◽  
Vol 55 (3) ◽  
pp. 557-561 ◽  
Author(s):  
William J. E. Parr ◽  
Ted Schaefer

The long-range spin–spin coupling constants between protons bonded to silicon and ring protons in C6H5SiH3, C6H5SiH2Cl, C6H5SiH2CH3, C6H5SiHCl2, and C6H5SiH(CH3)2 are determined from the proton magnetic resonance spectra of benzene solutions. A hindered rotor treatment of the barrier to internal rotation about the C—Si bond, in conjunction with the coupling constants over six bonds, allows the deduction of the low-energy conformations for C6H5SiH(CH3)2 and for C6H5SiHCl2, as well as of barriers of 1.0 ± 0.2 kcal/mol. The approach becomes less reliable for C6H5SiH2CH3 and for C6H5SiH2Cl and, particularly for the latter compound, the derived barrier is very likely an upper limit only. Ab initio molecular orbital calculations of the conformational energies are reported for C6H5SiH3, C6H5SiH2Cl, and for C6H5SiHCl2.


1969 ◽  
Vol 47 (19) ◽  
pp. 3688-3690 ◽  
Author(s):  
T. Schaefer ◽  
C. M. Wong ◽  
K. C. Tam

Double resonance experiments on the proton magnetic resonance spectrum of 2,6-dichlorobenzylfluoride yield the signs of the long-range coupling constants between the ring protons and the fluorine nuclei and protons in the fluoromethyl group. The signs and magnitudes of the long-range couplings are discussed in terms of their dependence on the conformation of the fluoromethyl group.


1996 ◽  
Vol 74 (8) ◽  
pp. 1524-1525 ◽  
Author(s):  
Ted Schaefer ◽  
Guy M. Bernard ◽  
Frank E. Hruska

An excellent linear correlation (r = 0.9999) exists between the spin–spin coupling constants 1J(1H,13C), in benzene dissolved in four solvents (R. Laatikainen et al. J. Am. Chem. Soc. 117, 11006 (1995)) and Ando's solvation dielectric function, ε/(ε – 1). The solvents are cyclohexane, carbon disulfide, pyridine, and acetone. 1J(1H,13C)for gaseous benzene is predicted to be 156.99(2) Hz at 300 K. Key words: spin–spin coupling constants, 1J(1H,13C) for benzene in the vapor phase; spin–spin coupling constants, solvent dielectric constant dependence of 1J(1H,13C) in benzene; benzene, estimate of 1J(1H,13C) in the vapor; nuclear magnetic resonance, estimate of 1J(1H,13C) in gaseous benzene.


1976 ◽  
Vol 54 (20) ◽  
pp. 3216-3223 ◽  
Author(s):  
William J. E. Parr ◽  
Roderick E. Wasylishen ◽  
Ted Schaefer

The stereospecific spin–spin coupling constants over five bonds between the α-proton in the side chain and the protons in the heterocycle in 2-vinylfuran, in its β-nitro and β-aldehydic derivatives, and in 2-vinylthiophene are used to demonstrate the preponderance of the s-trans conformers in polar and nonpolar solutions. These conclusions are compared with predictions made by molecular orbital theory at the STO-3G, INDO, CNDO/2, and MINDO/3 levels. Long-range coupling constants between the protons in the side chain and protons in the heterocycle are calculated by CNDO/2 and INDO–MO–FPT and are compared with experiment. It is concluded that the five-bond couplings involving the α-proton are most sensitive to conformation and that they are transmitted mainly via a σ electron mechanism. The other long-range coupling constants are discussed in terms of σ and π electron mechanisms. The STO-3G calculations yield barriers to internal rotation of greater than 4.8 kcal/mol.


1985 ◽  
Vol 38 (12) ◽  
pp. 1779 ◽  
Author(s):  
RH Contreras ◽  
CG Giribet ◽  
MA Natiello ◽  
J Perez ◽  
ID Rae ◽  
...  

Calculations by the IPPP-INDO method give the spin-spin coupling constants for the side-chain carbons, 3JCF and 4JCF, as 4.97 and 6.86 Hz respectively with substantial contributions to through-space coupling from the pathway CO-C-H…F. The observed values for 1-(2- fluorophenyl ) ethanone , 3.3 and 7.2 Hz, and for 1-(2,5- difluorophenyl ) ethanone , 3.7 and 7.3 Hz, are in good agreement with these predictions. Two compounds, a dihydroindenone and a naphthalenone, in which this pathway cannot be effective, show no fluorine coupling to the aliphatic carbon next to the carbonyl and the values of 3JCF are reduced to 2.2 and 2.5 Hz, consistent with the loss of a through-space Fermi contact term of the kind described above.


1974 ◽  
Vol 52 (9) ◽  
pp. 1714-1720 ◽  
Author(s):  
Peter W. Clark ◽  
John L. S. Curtis ◽  
Philip E. Garrou ◽  
George E. Hartwell

The phosphines PPhn(CH2CH2CH=CH2)3−n, n = 2–0, PPhn(CH2CH2CH2CH=CH2)3−n, n = 1 or 2, and PPh2CH2CH = CH2 have been synthesized and studied by 1H and 31P magnetic resonance. The n.m.r. spectra of PPh2(OCH2CH=CH2), its oxide, O=PPh2(OCH2CH=CH2), and its Arbuzov rearrangement product, O=PPh2(CH2CH=CH2), have been investigated by 31P decoupling of the proton spectrum, selective proton decoupling of the 31P spectrum, and comparison with computer-simulated spectra to determine the spin–spin coupling constants. The n.m.r. spectra of the related oxides O=PPh2CH2CH2CH=CH2, O=P(CH2CH2CH=CH2)3, and O=P(OCH2CH=CH2)3 are also assigned. The data indicate that 3JPH > 2JPH for alkenylphosphines, 2JPH is larger for phosphine oxides than for phosphines, and 3JPH is little changed in comparing phosphorus(III) with phosphorus(V) compounds.


Sign in / Sign up

Export Citation Format

Share Document