Raman and nuclear quadrupole resonance studies of the phase transition in pentachlorophenol

1978 ◽  
Vol 56 (3) ◽  
pp. 359-362 ◽  
Author(s):  
H. F. Shurvell ◽  
J. Korppi-Tommola ◽  
R. J. C. Brown

Raman and nqr spectra of pentachlorophenol (PCP) have been recorded at temperatures above and below the transition at 62 + 2 °C. The complete loss of structure in the Raman external mode region and the disappearance of the 35Cl nuclear quadrupole resonances above the transition temperature indicate a disordered structure for the high temperature phase. Super-cooling is observed in nqr and Raman spectra when the sample is cooled through the transition temperature. No evidence for any new crystal phase is observed on cooling the sample to liquid nitrogen temperature. Eleven of the 12 external modes predicted from the reported crystal structure of PCP have been observed in the Raman spectrum at 77 K.

1987 ◽  
Vol 42 (7) ◽  
pp. 739-748 ◽  
Author(s):  
Dirk Borchers ◽  
Alarich Weiss

A phase transition has been observed in bis(pyridinium) hexachlorometallates (C5H5NH)2[MIVCl6]. M = Sn. Te. Pb. Pt. The crystal structure of the low temperature phase II of the salt with M = Sn was determined, space group C 1ḷ- P 1̅, Z = 1 (a = 734.1pm, b = 799.0 pm, c = 799.7 pm,α= 83.229°. β = 65.377°, γ= 84.387°, T = 297 K). The four compounds are isotypic in phase II as well as in the high temperature phase I (C2H2-B2 /m, Z = 2) for which the crystal structure is known for M = Te . The lattice constants of all compounds (both phases) are given. The temperature dependence of the 35Cl NQR spectrum was investigated. The three line 35Cl NQR spectrum is in agreement with the crystal structure. The dynamics of the pyridinium ring shows up in a fade out of part of the 35Cl NQR spectrum . The influence o f H ↔ D exchange on 35Cl NQR is studied and an assignment of ν (35Cl) ↔ Cl(i) is proposed. The nature of the phase transition P1̅ (Z = 1) ↔ B2 /m (Z = 2) is discussed.


2000 ◽  
Vol 55 (1-2) ◽  
pp. 225-229 ◽  
Author(s):  
Hideta Ishihara ◽  
Keizo Horiuchi ◽  
Thorsten M. Gesing ◽  
Shi-qi Dou ◽  
J.-Christian Buhl ◽  
...  

The temperature dependence of 127I NQR and DSC as well as the crystal structure at room temperature of the title compound were determined. This compound shows a first-order phase transition of an order-disorder type at 245 K. Eight 127I(v1:m = ±1/2 ↔ ±3/2) NQR lines of 79.57, 81.86, 82.56, 83.36, 84.68, 87.72, 88.34, and 88.86 MHz, and corresponding eight 127I(v2: m = ±3/2 ↔±5/2) NQR lines were observed at liquid nitrogen temperature. Three 127I(υi) NQR lines wfth an intensity ratio of 1:1:2 in the order of decreasing frequency were observed just above the transition point and two NQR lines except for the middle-frequency line disappeared around room temperature. This temperature behavior of NQR lines is very similar to that observed in [N(CH3)4]2Hgl4. Another first-order phase transition takes place at 527 K. The structure of the room-temperature phase was redetermined: orthorhombic, Pnma, Z = 4, a = 1342.8(3), b = 975.7(2), c = 1696.5(3) pm. The NQR result of three lines with an intensity ratio of 1:1:2 is in agreement with this structure. The thermal displacement parameters of atoms in both cations and anions are large.


Author(s):  
M. A. Zakharov ◽  
Sergej I. Troyanov ◽  
Erhard Kemnitz

AbstractThe crystal structure of the high temperature superprotonic phase of CsHSeO


1970 ◽  
Vol 48 (20) ◽  
pp. 2411-2419 ◽  
Author(s):  
Robin L. Armstrong ◽  
Gregory L. Baker

Measurements of the temperature and pressure dependence of the 35Cl nuclear quadrupole resonance (NQR) frequency in K2OsCl6 are reported. The resonance frequency is measured at atmospheric pressure for temperatures from 4.2 to 430 °K and for five temperatures between 284 and 410 °K for pressures to 5000 kg cm−2. A second-order phase transition occurs at about 45 °K. In the high temperature phase all of the chlorine atoms are crystallographically equivalent. The analysis carried out deals exclusively with the data obtained in this phase. A thermodynamic relation is used to relate the experimental quantities (∂v/∂T)P and (∂v/∂P)T to the theoretical quantity (∂v/∂T)V. The latter quantity is calculated for a particular model to describe the motional averaging of the electric field gradient at the chlorine sites. The model adopted includes two distinct mechanisms—the usual Bayer–Kushida averaging mechanism and a mechanism resulting from the partial destruction of π bonding by the lattice vibrations. The thermodynamic relation is used in conjunction with the combined data for K2PtCl6, K2IrCl6, and K2OsCl6 to evaluate the validity of the model proposed. It is concluded that the model provides a consistent explanation of both the temperature and pressure variation of the NQR data. In addition, the analysis provides information on the nature of the molecular orbitals of the [MCl6]2− complex ion, gives a rough estimate of the ratio of the coefficient of thermal expansion to the isothermal compressibility, and lastly, yields a value for the average frequency of the rotary lattice mode in the three substances.


Sign in / Sign up

Export Citation Format

Share Document