Derivatives of diphenylmethane. Preferred conformations and barriers to internal rotation by the J method

1979 ◽  
Vol 57 (14) ◽  
pp. 1881-1886 ◽  
Author(s):  
Ted Schaefer ◽  
Walter Niemczura ◽  
Werner Danchura ◽  
Timothy A. Wildman

The long-range spin–spin coupling constants over six bonds, 6JpH,CH, in 3,5-dibromodiphenylmethane and 4,4′-difluorodiphenylmethane, respectively, imply that the ground state conformations of these molecules have C2v symmetry (gable conformations). In terms of a hindered rotor model which assumes a twofold barrier to internal rotation about the exocyclic carbon–carbon bond, the barrier in the dibromo derivatives is 1.1 ± 0.3 kcal/mol. A satisfactory fit to the temperature dependence of 6JpF,CH is found for a gable conformation. If the conformational properties of these molecules and of diphenylmethane are determined mainly by steric interactions between ortho C—H bonds on neighbouring phenyl groups, it seems likely that the results above are a first approximation to the conformational behaviour of diphenylmethane. Some molecular orbital calculations are in semiquantitative agreement with the conclusions based on coupling constants.


1977 ◽  
Vol 55 (3) ◽  
pp. 557-561 ◽  
Author(s):  
William J. E. Parr ◽  
Ted Schaefer

The long-range spin–spin coupling constants between protons bonded to silicon and ring protons in C6H5SiH3, C6H5SiH2Cl, C6H5SiH2CH3, C6H5SiHCl2, and C6H5SiH(CH3)2 are determined from the proton magnetic resonance spectra of benzene solutions. A hindered rotor treatment of the barrier to internal rotation about the C—Si bond, in conjunction with the coupling constants over six bonds, allows the deduction of the low-energy conformations for C6H5SiH(CH3)2 and for C6H5SiHCl2, as well as of barriers of 1.0 ± 0.2 kcal/mol. The approach becomes less reliable for C6H5SiH2CH3 and for C6H5SiH2Cl and, particularly for the latter compound, the derived barrier is very likely an upper limit only. Ab initio molecular orbital calculations of the conformational energies are reported for C6H5SiH3, C6H5SiH2Cl, and for C6H5SiHCl2.



1977 ◽  
Vol 55 (3) ◽  
pp. 552-556 ◽  
Author(s):  
Ted Schaefer ◽  
William J. E. Parr

On the basis of the observed spin–spin coupling constants between the sulfhydryl and ring protons and a hindered rotor treatment of the twofold barrier to internal rotation in a series of para substituted benzenethiol derivatives, it is argued that V2 is essentially zero in p-amino-benzenethiol and is 2.5 ± 0.2 kcal/mol in p-nitrobenzenethiol; having intermediate values for the methoxy, fluoro, methyl, and bromo derivatives in solution. The results are based on an assumed relationship between the four-bond and the fictitious six-bond couplings to the sulfhydryl proton. The conclusions are consistent with the observed magnitudes of the couplings over six and seven bonds, respectively, between the sulfhydryl proton and the fluorine nucleus and the methyl protons in the appropriate derivatives; as well as with the coupling between the sulfhydryl and methyl protons in 4-bromo-3-methylbenzenethiol. The experimental barriers are compared with ab initio molecular orbital calculations of their substituent dependence.



1984 ◽  
Vol 62 (8) ◽  
pp. 1592-1597 ◽  
Author(s):  
Ted Schaefer ◽  
Reino Laatikainen ◽  
Timothy A. Wildman ◽  
James Peeling ◽  
Glenn H. Penner ◽  
...  

Long-range spin–spin coupling constants over six bonds between 13C nuclei in the methyl group and ring protons or 19F nuclei in the para position are reported for 4-fluoroanisole, 2,3,5,6-tetrafluoroanisole, and pentafluoroanisole in solution. The couplings are σ–π electron mediated, as indicated by INDO MO FPT computations and by measurements on anisole, 2,6-dibromoanisole, 2,6-dichloroanisole, 2,6-dibromo-4-fluoroanisole, and 2,6-dibromo-4-methylanisole. On the basis of the measured coupling magnitudes and a hindered rotor model, it is concluded that the barrier to internal rotation about the [Formula: see text] bond in 4-fluoroanisole lies near 6 kcal/mol, is nearly zero in the tetrafluoroanisole, and is somewhat less than 1 kcal/mol in the pentafluoroanisole. In the latter, the preferred conformation is that in which the methoxy group lies in a plane perpendicular to the pentafluorophenyl plane. Some inconclusive dynamic nmr experiments on anisole, including T1ρ measurements, are briefly discussed.



1978 ◽  
Vol 56 (13) ◽  
pp. 1721-1723 ◽  
Author(s):  
Ted Schaefer ◽  
Werner Danchura ◽  
Walter Niemczura ◽  
William J. E. Parr

The J method, depending on a comparison between observed spin–spin coupling constants over six bonds between protons on a side chain and para ring protons and those calculated by a hindered rotor treatment, is applied to the determination of the twofold barrier to internal rotation about the carbon–carbon bonds in 3,5-dichlorobenzyl alcohol and selenol. In the alcohol, the C—O bond prefers the benzene plane by 0.3 ± 0.2 kcal/mol whereas, in the selenol, the C—Se bond prefers a plane perpendicular to the benzene ring by 3.8 ± 0.7 kcal/mol. Comparison with the thiol suggests that a major component of the barrier arises from repulsive interactions, increasing as the size of the XH (X = O, S, Se) group increases.



1978 ◽  
Vol 56 (17) ◽  
pp. 2229-2232 ◽  
Author(s):  
Ted Schaefer ◽  
Werner Danchura ◽  
Walter Niemczura

The long-range spin–spin coupling constants between methylene protons and ring protons are measured in 3,5-dichlorobenzylamine, 3,5-dichlorobenzyldimethylamine, and in 3,5-dichlorobenzyldimethylarsine. The couplings over six bonds are used to derive internal barriers to rotation about the carbon–carbon bond to the phenyl ring. In the above order, they are 0.3 ± 0.3, 0.8 ± 0.2, and 3.0 ± 0.5 kcal/mol. The conformation of lowest energy in the arsine is that in which the CH2—X bond lies in a plane perpendicular to the benzene plane.



1976 ◽  
Vol 54 (14) ◽  
pp. 2228-2230 ◽  
Author(s):  
Ted Schaefer ◽  
J. Brian Rowbotham

The conformational preferences in CCl4 solution at 32 °C of the hydroxyl groups in bromine derivatives of 1,3-dihydroxybenzene are deduced from the long-range spin–spin coupling constants between hydroxyl protons and ring protons over five bonds. Two hydroxyl groups hydrogen bond to the same bromine substituent in 2-bromo-1,3-dihydroxybenzene but prefer to hydrogen bond to different bromine substituents when available, as in 2,4-dibromo-1,3-dihydroxybenzene. When the OH groups can each choose between two ortho bromine atoms, as in 2,4,6-tribromoresorcinol, they apparently do so in a very nearly statistical manner except that they avoid hydrogen bonding to the common bromine atom.





Sign in / Sign up

Export Citation Format

Share Document