Hydrolyse des dérivés de cyclopropylidène-3 propyle. Structure et stéréochimie des alcools précurseurs et des produits résultant de l'hydrolyse

1981 ◽  
Vol 59 (7) ◽  
pp. 1089-1095 ◽  
Author(s):  
Robert Faure ◽  
Gilbert Leandri ◽  
Alain Meou

The 13C nmr spectra of 14 β-cyclopropylidenic alcohols 1 have been determined:[Formula: see text]All the chemical shifts were assigned and the substituent effects are discussed as a function of molecular conformation. The stereochemistry of two diastereoisomers of alcohols 1e (R1 = R3 = H; R2 = R4 = CH3) and 1k (R3 = H; R1 = R2 = R4 = CH3) was established from ir spectroscopy and 1H nmr results.The 13C nmr spectra of products arising from hydrolysis of 3-cyclopropylidene propanol 1a and 4-cyclopropylidene 2-butanol 1b tosylates have been also recorded. The analysis of these data enables us to establish unambiguously the structure and the stereochemistry of the hydrolysis products.

1975 ◽  
Vol 30 (9-10) ◽  
pp. 788-793 ◽  
Author(s):  
Ludger Ernst

During a reinvestigation of the 13C NMR spectra of 1-fluoronaphthalene (1) and of 2-fluoronaphthalene (2) at 20 and 25.16 MHz, uncertainties that existed in the literature about signal assignments for 1 could be cleared. In the spectral analyses for 2 given so far, five out of ten signals were incorrectly assigned. The corrected assignment is supported by extensive 13C{1H} double resonance experiments, by recording of proton-coupled 13C and 13C{19F} spectra and by off-resonance 13C{1H} noise-decoupling. The results show a strong + M-effect of the fluorine substituents on 13C chemical shifts similar to the effects of OH and OCH3 groups. 1H NMR spectra of 1 and 2 could be partially assigned by decoupling of the 19F resonances and by iterative analysis.


2006 ◽  
Vol 61 (10-11) ◽  
pp. 595-599
Author(s):  
Basavalinganadoddy Thimme Gowda ◽  
Shilpa Lakshmipathy ◽  
Jayalakshmi K. Lakshmipathy

Nineteen N-(2/3/4-methyl/halo/nitro-phenyl)-acetamides and substituted acetamides, 2/3/4- YC6H4NH-CO-CH3−iXi (Y = CH3, F, Cl, Br or NO2; X = Cl or CH3 and i = 0, 1, 2 or 3), have been prepared, characterized, and their 1H and 13C NMR spectra in solution measured and correlated. 1H and 13C NMR chemical shifts were assigned to the protons and carbon atoms, respectively, in line with those for similar compounds. Since the chemical shifts are dependent on the electron density around the nucleus or associated with the atom to which it is bound, the incremental shifts of the aromatic protons or carbon atoms due to -NH-CO-CH3−iXi and -CO-CH3−iXi (X = Cl or CH3 and i = 0, 1, 2, 3) in all the N-phenyl-substituted acetamides, C6H5NH-CO-CH3−iXi, are calculated by comparing the proton or carbon chemical shifts of these compounds with those of benzene or aniline. The incremental shifts due to the groups in the parent compounds have also been computed by comparing the chemical shifts of the protons or carbon atoms in these compounds with those of benzene or aniline, respectively. The computed incremental shifts and other data were used to calculate the 1H and 13C NMR chemical shifts of the substituted compounds in three different ways. The calculated chemical shifts by the three methods compared well with each other and with the observed chemical shifts, testing the validity of the principle of additivity of the substituent effects in these compounds. The variation of 1H NMR chemical shifts of either the aromatic or N-H protons, with the substituents in N-(phenyl)- and N-(2/3/4-chloro/methylphenyl)-acetamides and substituted acetamides did not follow the same trend, while the variation of the 13C NMR chemical shifts of C-1 and C=O carbon atoms and those of alkyl carbon atoms of these compounds followed more or less the same trend.


1980 ◽  
Vol 58 (4) ◽  
pp. 361-368 ◽  
Author(s):  
Constantinos A. Tsipis ◽  
Constantinos A. Tsoleridis

Carbon-13 nmr chemical shifts of a number of E-silyl-alkenes containing the silyl substituent at an sp2 carbon atom are presented. Assignments of the chemical shifts have been made by noting systematic variations in the spectra with changes in substituents and by comparison of the chemical shifts to those of the corresponding unsubstituted alkenes. The substituent effects observed were explained on the basis of the π-acceptor ability of the silyl substituents and the structure of the molecules. Comparing the 13C nmr spectra of the E-silyl-alkenes and those of the corresponding unsubstituted alkenes, differential chemical shifts have been obtained which can be used as empirical substituent parameters for the prediction of the 13C nmr spectra of other E-silyl-alkenes not yet studied. It was also demonstrated that 13C nmr spectroscopy can be used without resorting to special techniques (gated decoupling and the addition of paramagnetics) as an alternative method to the 1H nmr for the quantitative analysis of mixtures of regio-isomer E-silyl-alkenes.


1994 ◽  
Vol 59 (9) ◽  
pp. 2057-2068 ◽  
Author(s):  
Svatava Smrčková ◽  
Kristina Juricová ◽  
Viktor Prutianov

13C NMR spectra of p-nitrobenzoyl 2-, 4-, and 6-aminopyridine-3-carboxylates, their hydrochlorides, trifluoroacetates and 1-benzyl derivatives were studied. As found from the chemical shifts of pyridine carbon atoms C-2, C-4 and C-6, the free bases exist in the amino form whereas hydrochlorides and 1-substituted pyridinium derivatives in the imino form. Trifluoroacetates of the 2- and 6-amino derivatives have structure similar to that of amidiniumcarboxylates (parallel hydrogen bonds and partially ionic character) whereas trifluoroacetate of the 4-amino derivative is structurally close to the corresponding hydrochloride. The found structures were confirmed by 1H NMR and IR spectroscopy.


1975 ◽  
Vol 30 (9-10) ◽  
pp. 794-799 ◽  
Author(s):  
Ludger Ernst

The 13C NMR spectra of twelve amino-, dimethylamino-, diamino-, and bis(dimethylamino)naphthalenes are completely assigned by selective 13C{1H} double resonance and by interpretation of proton-coupled spectra. Strong substituent effects (Δδ) upon chemical shifts are observed and can largely be accounted for by mesomerism. The pronounced high-field shifts of C-6 in the 2-amino- and 2-dimethylaminonaphthalenes coincide with the enhanced reactivity of this position towards electrophilic reagents. In 1-dimethylaminonaphthalene and even more so in 1-dimethylamino-2-methylnaphthalene, conjugation is inhibited for steric reasons and Δδ’s are greatly diminished, thus giving an estimate for the contribution of resonance to substituent-induced shifts in the unhindered compounds. In two 1,8-disubstituted naphthalenes there are large deviations from additivity of substituent effects.


1980 ◽  
Vol 58 (15) ◽  
pp. 1503-1511 ◽  
Author(s):  
Pierre Metzger ◽  
Eliette Casadevall ◽  
André Casadevall ◽  
Marie-José Pouet

The 13C nmr spectra of α, αα, and αα′ substituted trans-fused bicyclo [4,n,0]alkan-3 ones, are described. Substituent effects are discussed in terms of their electron withdrawing character, axial or equatorial configuration, and cyclohexane deformation. 13C=O chemical shifts are shown to be based on the polarization of π bond and on C=O/X non-bonded interactions. As in ir and uv spectroscopy, 13C nmr is a convenient method for detecting an a substituent configuration in fixed ring ketones.


2014 ◽  
Vol 92 (9) ◽  
pp. 838-848 ◽  
Author(s):  
Vanessa Renee Little ◽  
Keith Vaughan

Five series of a novel class of 4-acyl-1-[2-aryl-1-diazenyl]piperazines have been synthesized and characterized: the 4-acetyl-1-[2-aryl-1-diazenyl]piperazines [series 1]; the 4-cyclohexylcarbonyl-1-[2-aryl-1-diazenyl]piperazines [series 2]; the 4-benzoyl-1-[2-aryl-1-diazenyl]piperazines [series 3]; the benzyl 4-[2-aryl-1-diazenyl]-1-piperazinecarboxylates [series 4]; and the t-butyl 4-[2-aryl-1-diazenyl]-1-piperazinecarboxylates [series 5]. The compounds were synthesized by diazotization of a primary aromatic amine and subsequent coupling to an appropriate secondary amine: 1-acetylpiperazine [series 1]; 1-(cyclohexylcarbonyl)-piperaizine [series 2]; 1-benzoylpiperazine [series 3]; benzyl 1-piperazinecarboxylate [series 4]; and t-butyl piperazine-1-carboxylate (1-BOC-piperazine) [series 5]. The compounds of series 1–5 were characterized by 1H NMR, 13C NMR, high-resolution MS and IR spectroscopy. The model compounds 1,4-di[2-aryl-1-diazenyl]piperazines, and ethyl 4-[2-aryl-1-diazenyl]-1-piperazinecarboxylates were used to facilitate the assignment of the chemical shifts specific to the piperazine ring carbons. HSQC spectra of select compounds established the correlation between proton and carbon resonance signals.


1980 ◽  
Vol 58 (6) ◽  
pp. 579-590 ◽  
Author(s):  
John A. Findlay ◽  
Lajos Radics

Base catalysed hydrolysis of rapamycin (C51H79NO13) affords six neutral compounds identified by chemical and spectroscopic means as 2a, 3b, 3d, 5, 2,4-dimethylphenol, and L(−)-piperidine-2-carboxylic acid 6, and whose generation has been plausibly rationalized. These findings as well as detailed analyses of 13C nmr and 1H nmr spectra provide independent corroboration of the X-ray derived rapamycin crystal structure 1. Structurally homogeneous in the solid state, rapamycin is found to occur in solutions as a mixture of two conformational isomers (approximately 4:1). Through nearly complete assignment of the high field 1H (400 MHz) and 13C (100.6 MHz) nmr spectra, the isomerism is shown to be associated with trans–cis rotation of an amidic bond within the 31-membered macrolide ring. The predominant form corresponds to the conformer portrayed by X-ray analysis.


1983 ◽  
Vol 48 (3) ◽  
pp. 877-888 ◽  
Author(s):  
Eva Petráková ◽  
Jan Schraml

All methyl O-benzoyl-β-D-xylopyranosides have been prepared and their 1H and 13C NMR spectra measured in deuteriochloroform solutions. The 1H NMR spectra were analysed to the first order and assigned with the aid of homonuclear decoupling. The 13C chemical shifts were assigned through heteronuclear selective decouling experiments. Some of the 13C chemical shifts observed in di- and tri-O-benzoyl derivatives differ considerably from those calculated according to the direct additivity rule from the shifts in the mono derivatives. It is shown that the nonadditivity is due to a conformational heterogeneity of the series of investigated compounds dissolved in deuteriochloroform. The heterogeneity is evidenced by the vicinal 1H-1H coupling constants and by 13 chemical shifts of C(1) methoxyl carbon atoms.


Author(s):  
Ganesamoorthy Thirunarayanan

A series containing thirteen title compounds were synthesized and recorded IR and NMR spectra. The infrared νNH, C=N(cm-1)stretches, 1H NMR δNH, 13C NMR δC=N(ppm) chemical shifts of synthesized oxazine amines were assigned and correlated with Hammett substituent constants, F and R parameters. From the results of statistical analyses, the effect of substituents on the above spectral frequencies can be discussed.


Sign in / Sign up

Export Citation Format

Share Document