Importance of lignosulfonates in petroleum recovery operations

1981 ◽  
Vol 59 (13) ◽  
pp. 1938-1943 ◽  
Author(s):  
Graham Neale ◽  
Vladimir Hornof ◽  
Christopher Chiwetelu

This paper reviews the potential importance of aqueous lignosulfonate solutions in the recovery of petroleum from existing partially depleted oil fields. The surfactant qualities of lignosulfonates are described and their ability to interact synergistically with petroleum sulfonate surfactants (which are currently popular in the industry) to produce ultra-low interfacial tensions with crude oil is discussed. The phase behaviour characteristics and oil recovery efficacies of these mixed surfactant systems are also examined.




1982 ◽  
Vol 89 (2) ◽  
pp. 441-457 ◽  
Author(s):  
Jorge E Puig ◽  
Elias I Franses ◽  
Wilmer G Miller


2020 ◽  
Vol 2 (1) ◽  
pp. 62-65
Author(s):  
NUR ASYRAF MD AKHIR ◽  
AFIF IZWAN ABD HAMID ◽  
ISMAIL MOHD SAAID ◽  
ANITA RAMLI

Surfactant flooding is one of the chemical enhanced oil recovery (CEOR) techniques that can be used to improve oil recovery. The surfactant injection reduces the oil-water interfacial tension and mobilizes residual oil towards the producing well. In this paper, the performance of alkyl ether carboxylate (AEC) and calcium lignosulfonate (CLS) in individual and mixed surfactant systems were investigated based on their ability to reduce the interfacial tension through a spinning drop method.   The interfacial tensions of individual and mixed surfactant systems in different brine systems were measured against decane at 25°C and 98°C. The results show that the individual and mixed surfactant systems in 3.5 wt.% NaCl brine has a significant reduction in interfacial tension at 98°C. In contrast, the presence of hardness in 2.5 wt.% NaCl and 1.0 wt.% MgCl2 brine reduces the interfacial tension of the individual AEC surfactant system and mixed surfactant system significantly at 98°C except for the individual CLS system. Meanwhile, the interfacial tension of mixed surfactant system decreases with increasing surfactant concentration in two brine systems and at 98°C. The findings show the significant application of the AEC and CLS surfactant mixture considering the harsh reservoir conditions for the chemical enhanced oil recovery application.



1982 ◽  
Vol 22 (03) ◽  
pp. 350-352
Author(s):  
G.E. Kellerhals

Abstract In surfactant flooding, low interfacial tensions (IFT's) are required for recovery of additional significant quantities of crude oil from a reservoir rock. This paper indicates the usefulness of perspective plots to facilitate comparison of sets of IFT data. Such perspective plots simplify the process of screening various surfactant systems for enhanced oil recovery. Introduction Numerous articles have been written about the effects and/or importance of IFT between oil and aqueous phases in determining ultimate oil recovery during a phases in determining ultimate oil recovery during a secondary (waterflooding) or tertiary oil-recovery process. In the area of micellar/polymer or surfactant process. In the area of micellar/polymer or surfactant flooding, IFT has been studied extensively both by industrial and by academic investigators. A simplistic summary of this work is that low IFT's (generally corresponding to high capillary numbers ( are required for recovery of additional significant quantities of crude oil from a reservoir rock. Method Development Several variables influence between an oil-rich phase and a surfactant-containing aqueous phase. During phase and a surfactant-containing aqueous phase. During a surfactant flood, variations in surfactant concentration and salt concentration will occur as a result of mixing of the chemical slug with the pre flush (or formation brine) and polymer drive (" rear mixing" ). Nelson investigated salt concentrations required during a chemical flood to achieve efficient oil displacement. Since these variables (and others) change during the progress of a flood, it is desirable to determine the impact of these changes on the IFT between the oil- and water-rich phases. To assess the importance of changes in these two key variables (surfactant concentration and salinity) on IFT, an x-y plot may be constructed with values of each variable along the axes. The IFT for a particular surfactant concentration and salinity then is obtained experimentally and the numerical value placed at the corresponding (x, y) point on the plot. The resultant figure/table can be referred to as an IFT map. Points of equal, or about equal, IFT can be connected to produce an IFT contour map. In the investigation of the effect(s) of temperature on a given surfactant system and crude oil, IFT maps might be constructed for each of the pertinent temperatures. IFT's might be determined at six different sodium chloride concentrations (e.g., 1.0, 1.5, 2.0, 3.0, 4.0, and 5.0 wt%) and four surfactant concentrations (e.g., 0.085, 0.064, 0.042, and 0.021 meq/mL), resulting in IFT maps (for each temperature) each consisting of 24 IFT values. A comparison of the values of one map to the values of a second map (measurements made at different temperature) then is required to determine the impact of the temperature change. A single value for IFT for a given salinity and surfactant concentration assumes that the system is two-phase, because two IFT's can be measured for a three-phase system consisting of an oil-rich phase, a water-rich phase, and a microemulsion phase. phase. A method to allow easier comparison for the relatively large number of IFT data points that may be obtained during the study/screening of various surfactant systems at various conditions is described in this paper. The technique consists of interpolating between IFT values and then plotting the data with a perspective plotting routine. The method allows comparisons of IFT values for different crude oils, temperatures, cosolvent types, surfactant types, hardness ion concentrations, etc., through visual scanning of a perspective plot ranter than through trying to judge or compare numerical IFT values of an IFT map. SPEJ p. 350



2003 ◽  
Vol 88 (4) ◽  
pp. 860-865 ◽  
Author(s):  
W. L. Ng ◽  
D. Rana ◽  
G. H. Neale ◽  
V. Hornof


1982 ◽  
Vol 22 (01) ◽  
pp. 53-60 ◽  
Author(s):  
William J. Benton ◽  
Natoli John ◽  
Syed Qutubuddin ◽  
Surajit Mukherjee ◽  
Clarence M. Miller

William J. Benton, Carnegie-Mellon U. John Natoli, Carnegie-Mellon U. Qutubuddin, Syed SPE, Carnegie-Mellon U. Mukherjee, Surajit, Carnegie-Mellon U. Miller, Clarence M., SPE, Carnegie-Mellon U. Fort Jr., Tomlinson, Carnegie-Mellon U. Abstract Phase behavior studies were carried out for two systems containing pure surfactants but exhibiting behavior similar to that of commercial petroleum sulfonates. One system contained the isomerically pure surfactant sodium-8-phenyl-n-hexadecyl-n-sulfonate (Texas 1). The other contained sodium dodecyl sulfate (SDS). Additional components used in both systems were various pure short-chain alcohols, NaCl brine and n-decane. Aqueous solutions containing surfactant, cosurfactant, and NaCl were studied over a wide range of compositions with polarizing and modulation contrast microscopy, as well as the polarized light screening technique. Viscosity measurements were conducted on selected scans of the Texas 1 system. Maxima and minima of the scans were correlated with textural changes observed with microscopy. The aqueous solutions were contacted with equal volumes of n-decane, and phase behavior and interfacial tensions were determined. The middle microemulsion phase was found to be oil continuous close to the upper phase boundary and water continuous close to the lower phase boundary. Both the Texas 1 and SDS systems showed similar behavior in that the middle microemulsion phase was observed over the entire range of surfactant concentrations studied. Introduction Surfactant systems usually consisting of petroleum sulfonate, an alcohol, salt, and water have been used for enhanced oil recovery. Various parameters important to oil recovery by surfactant flooding, such as interfacial tension and viscosity, are related strongly to the phase behavior of the microemulsion systems. The relationship of ultralow interfacial tensions to phase separation has been treated in our laboratory. The recovery of petroleum from laboratory cores and field tests appears to be related directly to phase behavior. It is important to understand phase behavior to identify the mechanisms involved and improve the efficiency of the oil-recovery process. The physicochemical aspects of the phase behavior of microemulsion systems containing commercial petroleum sulfonates as surfactants have been well documented by Healy and Reed and others. However, the systems studied were not pure, and the commercial surfactants sometimes contained as much as 40% inactive ingredients. There is a need to develop model microemulsion systems using pure components. Such systems would provide an experimental platform for verifying or interpreting the implications of any model for the phase behavior of multicomponent microemulsion systems and also allow the behavior of commercial systems to be predicted and understood. The objective of our work has been to fulfill these needs. Microemulsions have been classified as lower phase (l), upper phase (u), or middle phase (m) in equilibrium with excess oil, excess brine, or both excess oil and brine, respectively. Transitions among these phases have been studied as functions of salinity, alcohol concentration, temperature, etc. The middle-phase microemulsion is particularly significant because microemulsion/excess brine and microemulsion/excess oil tensions can be ultra low simultaneously. The concept of an optimal parameter as proposed originally by Reed and Healy when equal amounts of oil and brine are solubilized in the middle phase has been followed in this paper. We have shown earlier that the structure of petroleum sulfonate solutions exhibits a general pattern of variation with salinity. SPEJ P. 53^





Soft Matter ◽  
2015 ◽  
Vol 11 (45) ◽  
pp. 8848-8855 ◽  
Author(s):  
Yanjuan Yang ◽  
Lifei Liu ◽  
Xin Huang ◽  
Xiuniang Tan ◽  
Tian Luo ◽  
...  

Realization of the vesicle to micelle transitions in cationic/cationic mixed surfactant systems by temperature stimuli.





2021 ◽  
Vol 33 (7) ◽  
pp. 1471-1480
Author(s):  
Mohammed Hassan ◽  
Sadeq M. Al-Hazmi ◽  
Ibrahim A. Alhagri ◽  
Ahmed N. Alhakimi ◽  
Adnan Dahadha ◽  
...  

Micellar catalysis exhibited by mixed surfactant systems and gemini surfactants was reviewed. The review focused on mixed surfactant systems and tried to correlate the changes in the physico-chemical properties of these systems to the variations of their catalytic activities. Mixed surfactant systems are promising as the catalytic efficiency of some single surfactants was significantly enhanced in the presence of other critically selected surfactants. The selection should consider the charge, size, and structures of the head group as well as an appropriate length of hydrocarbon tail. The overall conclusion has arrived the mixed surfactant systems could be a tool by which the reaction rate can be tuned by changing the composition and/or the components’ structures. The higher catalytic activity of gemini surfactants compared to conventional ones, their facile synthesis and liability for structure control made them of superior choice for micellar catalysis.



Sign in / Sign up

Export Citation Format

Share Document