The preparation of thiolato bridged platinum dimers; the crystal and molecular structure of cis-μμ′-bis(phenylmethanethiolato)bis(phenylmethanethiolatomethyldiphenylphos- phineplatinum(II)), cis-[(PMePh2)Pt(SCH2Ph)(μ-SCH2Ph)]2

1982 ◽  
Vol 60 (16) ◽  
pp. 2075-2081 ◽  
Author(s):  
Peter H. Bird ◽  
Upali Siriwardane ◽  
Rabin D. Lai ◽  
Alan Shaver

Fusion invacuo of complexes of the type P2Pt(SR)2 is a facile route to dimers of the type [PPt(SR)(μ-SR)]2; thus, the compounds cis-P2Pt(SR)2, where P = PPh3, PMePh2, R = CH2Ph and trans-P2Pt(SR)2, where P = PPh3, PMePh2, PMe2Ph, R = 4-C6H4CH3 gave the appropriate dimers 1–5. A three-dimensional X-ray structure analysis of the complex [(PMePh2)Pt(SCH2Ph)(μ-SCH2Ph)]2, 2, has shown that it has cis geometry with the benzyl groups of the bridging thiolato ligands oriented anti with respect to each other. The dihedral angle between the two square planes is 138.8°. Crystals of 2 are triclinic, space group [Formula: see text], with two molecules in a cell of dimensions a = 10.856(3) Å, b = 19.935(5) Å, c = 12.202(4) Å, α = 82.52(2)°, β = 105.18(2)°, and γ = 92.35(2)°. Full-matrix least-squares refinement converged at R = 0.052.

1975 ◽  
Vol 30 (1-2) ◽  
pp. 14-18 ◽  
Author(s):  
R. Mergehenn ◽  
L. Merz ◽  
W. Haase

The crystal and molecular structure of β-bromo(diethylaminoethanolato)copper(II) has been determined from three dimensional X-ray diffractometer data. The compound crystallizes in the triclinic space group Pï with one dimer in a unit cell of dimensions α=10.180(II), b=7.999(9), c=6.227(7) Å and a=110.69(4), β=103.12(4), γ=73.82(4)[°]. The structure was refined by least-squares methods using 1944 independent reflexions to give a final R-index of 0,05. The molecule consists of dimeric Cu2O2-units with Cu—O distances of 1.900(4) Å and 1.914(4) A, respectively. The dimers are additional bridged by bromines, so that a “polymeric” structure results; Cu—Br distances are 2.357(2) and 3.660(2) A, respectively. The Cu—Cu distances are 3.003(2) (oxygen bridges) and 4.506(2) Å (bromine bridges).


1983 ◽  
Vol 36 (4) ◽  
pp. 683 ◽  
Author(s):  
BF Hoskins ◽  
RJ Steen

The crystal structure of the complex Mn2(CO)8(dam) (dam = Ph2AsCH2AsPh2) has been determined by three-dimensional X-ray diffraction methods. The crystals are triclinic, space group P1, with a 11.191(1), b 16.498(5), c 9.455(1) �, a 93.64(2), β 109.08(2), γ 89.36(2)� and contain two discrete, binuclear molecules of Mn2(CO)8(dam) per unit cell. The structure, solved by direct and Fourier methods, was refined by a least-squares procedure to R and Rw of 0.065 and 0.082 respectively for 1907 independent, statistically significant reflections collected by counter methods. The feature of particular interest in this compound is the accommodation of the bridging bidentate dam ligand [As.. .As separation 3.242(2) �] across a shorter Mn�-Mn� bond [2.962(3) �] which constrains the molecule so that a much less staggered configuration of the two manganese coordination octahedra is observed relative to the parent compound Mn2(CO)10, the rotation of the two equatorial planes in the former being 30�.


1983 ◽  
Vol 61 (6) ◽  
pp. 1185-1188 ◽  
Author(s):  
Hans Koenig ◽  
Richard T. Oakley ◽  
A. Wallace Cordes ◽  
Mark C. Noble

The reaction of tetrasulphur dinitride with norbornadiene produces the 1:1 adduct S4N2•C7H8; X-ray crystallographic analysis of this compound reveals that olefin addition cleaves one of the sulphur–sulphur bonds of S4N2, yielding a novel eight-membered C2S4N2 ring. Crystals of S4N2•C7H8 are monoclinic, space group P21/c, a = 6.127(1), b = 17.369(1), c = 9.580(1) Å, β = 106.74(1)°, V = 1003.8(5) Å3Z = 4. The structure was solved by direct methods and was refined by full-matrix least-squares procedures to R = 0.039. The S—S—N—S—N—S fragment of the C2S4N2 ring is planar to within 0.15 Å. The S—C—C—S unit is folded out of this plane to produce a dihedral angle of 74.5°.


1974 ◽  
Vol 52 (7) ◽  
pp. 1140-1146 ◽  
Author(s):  
Claude Barbeau ◽  
Ram Janam Dubey

The crystal and molecular structure of cyclopentadienylcarbonyl-bis(triphenylphosphine)-manganese(benzenate), MnC5H5CO[P(C6H5)3]2•C6H6, has been obtained from analysis of three dimensional X-ray data obtained with a precession camera. The red, rectangular crystals are triclinic, space group [Formula: see text] and have a unit cell with the following parameters: a = 9.83(2) Å, b = 14.79(1) Å, c = 11.36(2) Å, α = 69.44(8)°, β = 66.48(8)°, γ = 67.57(10)°, and z = 2. The final residual factor is 0.087 for the 4554 independent reflections used in the least squares refinement. The structure consists of individual molecules of Mn(C5H5)CO[P(C6H5)3]2. The distance [Formula: see text] is 2.16(1) Å. The coordinate CO (Mn—C: 1.748(9) Å, C—O: 1.172(11) Å) is perpendicular to the plane of the phosphorous and manganese atoms.The important characteristic is the angle P—Mn—P of 104(1)° (Mn—P: 2.237(3) Å). The angular opening of 14° is considered to be a consequence of an electrostatic repulsion between the two donor P atoms. [Journal translation]


Author(s):  
A. P. Bozopoulos ◽  
C. A. Kavounis ◽  
G. A. Stergioudis ◽  
P. J. Rentzeperis ◽  
A. Varvoglis

AbstractThe crystal and molecular structure of the title compound (BPIS hereafter) has been determined from three-dimensional X-ray data, measured on a computer-controlled STOE AED 2 diffractometer. The structure is triclinic Space groupThe structure was solved by Patterson and Fourier syntheses and refined by least-squares calculations to a finalTwo I-C


1985 ◽  
Vol 63 (3) ◽  
pp. 581-585 ◽  
Author(s):  
Kwong Khee Lai ◽  
Carl H. Schwalbe ◽  
Keith Vaughan ◽  
Ronald J. Lafrance ◽  
Clive D. Whiston

The crystal structures of the title compounds have been determined from X-ray data collected on a four-circle diffractometer and refined by the full-matrix least-squares method. The former compound crystallizes in the orthorhombic system, space group Pbcn, with a = 14.346(8), b = 7.239(1), c = 17.276(2) Å, and has been refined to a conventional R factor of 0.043 for 890 observed reflections. Corresponding results for the latter compound are monoclinic, P21/n, a = 12.222(4), b = 7.482(2), c = 14.170(8) Å, β = 94.06(4)°, R = 0.060 for 2128 observed data. The triazine rings of both compounds exhibit short N(1)—N(2) bonds and tetrahedral geometry at C(4); however, the ring is puckered in the first compound but flat in the second. Molecules in both crystals are linked by [Formula: see text] hydrogen bonds.


1994 ◽  
Vol 72 (4) ◽  
pp. 1154-1161 ◽  
Author(s):  
Wolfgang Kliegel ◽  
Gottfried Lubkowitz ◽  
Steven J. Rettig ◽  
James Trotter

Three 2-(hydroxyamino)alkanols have been reacted with sterically hindered arylboronic acids, ArB(OH)2. When Ar = o-tolyl, 1:2 condensates having bicyclic structures are formed but when Ar = mesityl (2,4,6-(CH3)3C6H2), 1:1 condensates having six-membered cycloboronate structures result. These 1:1 condensates represent the first examples of N-unsubstituted 1,3-dioxa-4-aza-2-boracyclohexane derivatives. An X-ray analysis of one example provides unambiguous proof of the structure. Crystals of 2-mesityl-6,6-pentamethylene-1,3-dioxa-4-aza-2-boracyclohexane, 3c, are monoclinic, a = 11.076(9), b = 23.94(2), c = 13.414(9) Å, β = 109.40(5)°, Z = 8, space group P21/n. The structure was solved by direct methods and refined by full-matrix least-squares procedures to R = 0.051 and Rw = 0.058 for 2037 reflections with I ≥ 3σ(F2).


1986 ◽  
Vol 39 (4) ◽  
pp. 713 ◽  
Author(s):  
D Dakternieks ◽  
BF Hoskins ◽  
CL Rolls ◽  
ERT Tiekink

The crystal and molecular structure of bis ( tricyclohexylphosphine )cadmium(II) nitrate as its dichloromethane solvate, Cd [P(c-C6H11)3]2(NO3)2.CH2Cl2, has been determined by single- crystal, three-dimensional X-ray diffraction methods. The crystals of the cadmium(II) complex are monoclinic with space group C2/c, a 20.880(6), b 12.775(3), c 17.075(5) Ǻ and β 106.38(2)°, Z 4. The structure was solved by normal Fourier methods and refined by a full-matrix least-squares procedure. The refinement used the 2169 statistically independent reflections for which I ≥ 2σ(I) converged with R and Rw of 0.065 and 0.067 respectively. The crystals consist of discrete Cd [P(c-C6H11)3]2(NO3)2 molecules and CH2Cl2 in the ratio 1 : 1. There is a distorted tetrahedral environment around the cadmium atom formed from the coordination of the two phosphines and two nitrates with each nitrate essentially occupying one stereochemical position. The two markedly different Cd -O bond lengths of 2.405(9) and 2.575(8) Ǻ show gross asymmetry in the coordination of the nitrate.


1988 ◽  
Vol 41 (5) ◽  
pp. 641 ◽  
Author(s):  
GB Robertson ◽  
PA Tucker

The structure of mer-(Pme2Ph)3Cl-cis-H2IrIII (1) has been determined by single-crystal X-ray and neutron diffraction analyses. Crystals are monoclinic, space group P21, with a 11.476(4), b 14.069(5), c 8.286(3)Ǻ, β 92.45(1)° and Z 2. Full-matrix least-squares analyses converged 0.022 for 7773 X-ray data and R(F2) = 0.062 for 1538 neutron data. Ir -H [1.557(11)Ǻ trans to Cl, 1.603(10) Ǻ trans to P] and Ir -P distances [2.292(1)Ǻ trans to P, 2.328(1)Ǻ trans to H] both exhibit trans lengthening effects. Consistent with the increased hydride content the Ir -P distances in (1) are c. 0.04 Ǻ shorter than for the corresponding bonds in its dichloro monohydrido analogues and c. 0.08 Ǻ shorter than those in the trichloride . In contrast Ir-Cl [2.505(1)Ǻ] is not significantly different to the corresponding distance (2.504 Ǻ av.) in mer -(PMe2Ph)3-cis-Cl2HIrIII.


1972 ◽  
Vol 50 (1) ◽  
pp. 93-98 ◽  
Author(s):  
F. W. B. Einstein ◽  
K. N. Slessor

The crystal and molecular structure of 3-chloro-3-deoxy-1,2;5,6-di-O-isopropylidene-β-D-idose has been determined from three dimensional X-ray data collected by counter methods. The structure was refined by full-matrix least-squares techniques to a conventional R factor of 5.7% for the 817 observed reflections. The compound crystallizes in the orthorhombic space group P212121 with four molecules in a cell of dimensions a = 9.744(6), b = 26.76(2), c = 5.403(3) Å.The structure analysis has served to confirm the site of halogenation and that it occurs stereospecifically. The conformation of the furan ring is an envelope arrangement with C(4) displaced from the mean plane.


Sign in / Sign up

Export Citation Format

Share Document