Kinetics and mechanism of the oxidation of alcohols by ferrate ion

1993 ◽  
Vol 71 (9) ◽  
pp. 1394-1400 ◽  
Author(s):  
Donald G. Lee ◽  
Huifa Gai

A kinetic study of the reduction of ferrate ion under basic conditions has been completed. The observation that a typical aliphatic ether, tetrahydrofuran, is oxidized at a rate comparable to that of aliphatic alcohols, such as cyclopentanol, indicates that the reaction between ferrate and alcohols is likely initiated by attack of the oxidant at an α-C—H bond, a conclusion that is consistent with the occurrence of primary deuterium kinetic isotope effects (2.8–4.3 at 25 °C) when α-hydrogens are replaced by deuterium. Because only acyclic products are obtained from the oxidation of cyclobutanol by ferrate, it may be concluded that free radical intermediates are involved in the reaction. The insensitivity of the reaction rates to substituent effects during the oxidation of substituted mandelic acids indicates that substantial charges are not built up in the transition state. All of these observations are most readily accommodated by a mechanism in which the reaction is initiated by a 2 + 2 addition of an Fe=O bond to the α-C—H of an alcohol to give an organometallic intermediate that subsequently decomposes by homolytic cleavage of the resulting C—Fe bond. Comparisons are made with the reactions between alcohols and other high-valent transition metal oxides.


1985 ◽  
Vol 63 (2) ◽  
pp. 445-451 ◽  
Author(s):  
Allan K. Colter ◽  
Charles C. Lai ◽  
A. Gregg Parsons ◽  
N. Bruce Ramsey ◽  
Gunzi Saito

Oxidation of N,N′-dimethyl-9,9′-biacridanyl (DD) has been investigated as a model for single electron transfer (SET)-initiated oxidation of NADH coenzyme models such as N-methylacridan (DH). Oxidants investigated cover a 1010-fold range of reactivity in acetonitrile and include the π acceptors 1,4-benzoquinone (BQ), 2,6-dichloro-1,4-benzoquinone (DCIBQ), p-chloranil (CA), 2,3-dicyanobenzoquinone (DCBQ), 2,3-dicyano-1,4-naphthoquinone (DCNQ), 2,3-dicyano-5-nitro-1,4-naphthoquinone (DCNNQ), 9-dicyanomethylene-2,4,7-trinitrofluorene (DCMTNF), 9-dicyanomethylene-2,4,5,7-tetranitrofluorene (DCMTENF), 7,7,8,8-tetracyanoquinodimethane (TCNQ), and tetracyanoethylene (TCNE), and the one-electron oxidant tris(2,2′-bipyridyl)cobalt(III), [Formula: see text] The oxidation product is, in every case, N-methylacridinium ion (D+). A mechanism involving a rate-determining electron transfer with simultaneous fragmentation to D+ and N-methyl-9-acridanyl radical (D•) is proposed. This mechanism is supported by the observed dependence of the rate on oxidant reduction potential, by spin-trapping experiments, by kinetic isotope effects in oxidation of 9,9′-dideuterio-DD, and by substituent effects in oxidation of 2,2′- and 3,3′-dimethoxy-DD. The rate of oxidation of DD relative to that of DH is 3.4 × 102 with [Formula: see text] and with the π acceptors varies from ea. 0.3 (BQ) to 8.1 × 104 (DCMTENF). The results rule out a SET-initiated mechanism for oxidation of DH by all of the oxidants studied except TCNQ and DCMTENF.





ChemInform ◽  
2010 ◽  
Vol 29 (43) ◽  
pp. no-no
Author(s):  
M. AUNE ◽  
R. DANIELSSON ◽  
A. HUSSENIUS ◽  
P. RYBERG ◽  
A. G. KRISTJANSDOTTIR ◽  
...  


1989 ◽  
Vol 67 (1) ◽  
pp. 21-26 ◽  
Author(s):  
Zhu-Gen Lai ◽  
Kenneth Charles Westaway

The secondary α-deuterium kinetic isotope effects and substituent effect found in the SN2 reactions between a series of para-substituted sodium thiophenoxides and benzyldimethylphenylammonium ion are significantly larger when the reacting nucleophile is a free ion than when it is a solvent-separated ion pair complex. Tighter transition states are found when a poorer nucleophile is used in both the free ion and ion pair reactions. Also, the transition states for all but one substituent are tighter for the reactions with the solvent-separated ion pair complex than with the free ion. Hammett ρ values found by changing the substituent on the nucleophile do not appear to be useful for determining the length of the sulphur–α-carbon bond in the ion pair and free ion transition states. Keywords: Isotope effects, ion pairing, nucleophilic substitution, SN2 reactions, transition states.



1977 ◽  
Vol 55 (20) ◽  
pp. 3515-3526 ◽  
Author(s):  
Graeme G. Strathdee ◽  
David M. Garner ◽  
Russell M. Given

The kinetics and mechanism of exchange of deuterium between D2 and water and between D2 and methanol, catalyzed respectively by concentrated potassium hydroxide and potassium methoxide, has been studied between 348 and 398 K. In the D2–KOH–H2O case, the transfer of deuterium was found to be controlled by the rate of activation of the D2 molecule by OH−. Rapid exchange of D+ with the aqueous solution followed. From the D2–KOCH3–CH3OH studies, it was concluded that deuterium exchange depended upon the rates of both D2 activation by methoxide and interaction of the solvent with the transition, or encounter, complex. The dependence of second-order rate constants on solvent activity for both systems was determined by normalization of the exchange reaction rates to unit reagent activity. Analysis of the kinetic isotope effects for each system suggested that their increase with base concentration or temperature was due to solvation effects.



1979 ◽  
Vol 57 (11) ◽  
pp. 1354-1367 ◽  
Author(s):  
Kenneth Charles Westaway ◽  
Syed Fasahat Ali

The nucleophilic substitution reactions of a series of 4-substituted phenylbenzyldimethyl-ammonium ions with thiophenoxide ions at 0 °C in N,N-dimethylformamide have been used to demonstrate how a change in the leaving group alters the structure of the SN2 transition state. Heavy atom (nitrogen) kinetic isotope effects, secondary α-deuterium kinetic isotope effects and Hammett ρ values provide qualitative descriptions of both the nucleophile–α-carbon and α-carbon–leaving group bonds in the transition states of these reactions. The results indicate that changing to a better leaving group causes the bond between the α-carbon and the nucleophile to be much more fully formed while the bond to the leaving group is essentially unchanged. The results are discussed in the light of current theories of substituent effects on SN2 reactions and a possible explanation for the surprising results (i) that the greatest effect is in the bond more remote from the point of structural change and (ii) that more nucleophilic assistance is required to displace a better leaving group is given.



1998 ◽  
Vol 52 ◽  
pp. 911-920 ◽  
Author(s):  
Marie Aune ◽  
Rolf Danielsson ◽  
Anita Hussénius ◽  
Per Ryberg ◽  
Ása Guorún Kristjánsdóttir ◽  
...  


1969 ◽  
Vol 47 (13) ◽  
pp. 2506-2509 ◽  
Author(s):  
Jan Bron ◽  
J. B. Stothers

As a test of our earlier interpretations of the 13C kinetic isotope effects found for alcoholysis of 1-phenyl-1-bromoethane, we have examined the effect of the p-methyl and p-bromo substituents on the 13C fractionations in ethanol and methanol. Isotopic fractionation at the α-carbon is found to be substituent dependent, and the observed trend is consistent with the proposal that stabilization of the cationic center by the phenyl ring is a major factor governing the isotope effect in these systems. The first example of an inverse primary kinetic isotope effect for carbon (k12/k13 < 1) is described.



Sign in / Sign up

Export Citation Format

Share Document