organic reaction
Recently Published Documents


TOTAL DOCUMENTS

546
(FIVE YEARS 54)

H-INDEX

32
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Kohtaro Osakada ◽  
Yasushi Nishihara

The Suzuki–Miyaura reaction (cross-coupling reaction of boronic acids with organic halides catalysed by Pd complexes) has been recognised as the useful synthetic organic reaction that forms a C(sp2)–C(sp2) bond. The...


2021 ◽  
Author(s):  
Cesar N. Prieto Kullmer ◽  
Jacob A. Kautzky ◽  
Shane W. Krska ◽  
Timothy Nowak ◽  
Spencer D. Dreher ◽  
...  

Reaction generality is crucial in determining the overall impact and usefulness of organic synthetic methods. In contrast, contemporary generalization processes seem unable to meet the growing demand for robust methodology. We sought to develop an accelerated approach towards achieving generality, inspired by phenotypic screening, that rapidly expands the scope and utility of synthetic methods. This approach was validated by example of the metallaphotoredox decarboxylative arylation, resulting in the discovery of a novel additive that overcomes many lingering limitations of this method and has significant mechanistic implications for nickel-catalyzed cross couplings in general.


Author(s):  
Amit Kumar ◽  
Ankit Siwach ◽  
Prabhakar Verma

: Pyrimidine and its derivatives are a very important class of heterocyclic compounds that show interesting applications in the field of medicinal chemistry. Pyrimidine not only plays an important role as an organic reaction intermediate but also has a wide range of interesting biological activities viz. antibacterial, antifungal, anticancer, anti-inflammatory, antiviral, and antiprotozoal activity, etc. Numerous methods are available for the formation of pyrimidine derivatives have been reported in the literature. The advantage of pyrimidine as a starting material for different therapeutically potent derivatives has given momentum to this research. This review aims to report the new work on the synthesis of marketed drugs which consist of pyrimidine moiety.


Author(s):  
Aastha Sharma ◽  
Aakash Deep ◽  
Minakshi Gupta Marwaha ◽  
Rakesh Kumar Marwaha

: Quinoxaline (C8H6N2), commonly called 1,4-diazanaphthalene, 1,4-benzodiazine, or benzopyrazine, is a very potent nitrogenous heterocyclic moiety consisting of a benzene ring fused with the pyrazine ring. A number of different methods for the synthesis of quinoxaline derivatives have been reported in the literature, but the most effective method, commonly used for the synthesis of quinoxaline analogues involves the condensation of substituted o-phenylenediamines with 1, 2- dicarbonyl compounds in the presence of different catalyst(s). The presence of different types of catalysts and their concentration affects the overall yield of the product. Quinoxaline not only plays an important role as an organic reaction intermediate but also has a wide spectrum of interesting biological activities viz. antibacterial, antifungal, anticancer, anti-inflammatory, antiviral, and antiprotozoal activity, etc. Some commercially available drug molecules containing quinoxaline moiety are echinomycin (as antibacterial, antineoplastic, and nucleic acid inhibitor), triostins (cyclic desipeptide as an antibacterial agent), dioxidine and mequindox (as antibacterial agents), carbadox (controlling swine dysentery), desoxycarbadox (as swine growth promoter) and panadipion (as hepatoprotective agent), etc. A large number of quinoxaline analogues possessing different biological activities and their synthetic procedures have been patented worldwide.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yiwei Liu ◽  
Xi Wu ◽  
Zhi Li ◽  
Jian Zhang ◽  
Shu-Xia Liu ◽  
...  

AbstractEffecting the synergistic function of single metal atom sites and their supports is of great importance to achieve high-performance catalysts. Herein, we successfully fabricate polyoxometalates (POMs)-stabilized atomically dispersed platinum sites by employing three-dimensional metal-organic frameworks (MOFs) as the finite spatial skeleton to govern the accessible quantity, spatial dispersion, and mobility of metal precursors around each POM unit. The isolated single platinum atoms (Pt1) are steadily anchored in the square-planar sites on the surface of monodispersed Keggin-type phosphomolybdic acid (PMo) in the cavities of various MOFs, including MIL-101, HKUST-1, and ZIF-67. In contrast, either the absence of POMs or MOFs yielded only platinum nanoparticles. Pt1-PMo@MIL-101 are seven times more active than the corresponding nanoparticles in the diboration of phenylacetylene, which can be attributed to the synergistic effect of the preconcentration of organic reaction substrates by porous MOFs skeleton and the decreased desorption energy of products on isolated Pt atom sites.


2021 ◽  
Vol 9 (2) ◽  
pp. 6-30
Author(s):  
Nurul Nadiah Rosly ◽  
Shafida Abd Hamid ◽  
Nor Azlina A. Rahman

Students perceive organic chemistry as a challenging subject for them to learn and master, which results in a high failure rate. This study investigates the perception of chemistry students of the Department of Chemistry, Kulliyyah of Science at International Islamic University Malaysia (IIUM), on organic chemistry courses and identify the topics that the students found difficult to grasp, which may affect their grades. The correlation of students’ perception on the difficulty level in studying organic chemistry subjects (I and II) with the grades obtained for both courses, and the correlation of the type of study attitude with the grades achieved for Organic Chemistry I and II, were also investigated. From the data analysis of questionnaires distributed to 160 respondents, stereochemistry (n = 58.8 %), determination of reaction type (n = 59.4 %), construction of the reaction mechanisms (n = 73.2 %), and characterisation of organic reaction (n = 77.5 %), were the topics that the students perceived to be difficult. Perception on the difficulty in studying organic chemistry was positively associated with the achievement of excellent grades for both organic chemistry subjects (I; rs = 0.413**, p<0.01 and II; rs = 0.436**, p<0.01). Quality of study attitude shows no association with the grades obtained for organic chemistry I (rs = 0.330**, p = 1.00) but positively associated with grades of organic chemistry II subject (rs = 0.140, p<0.01). This study could serve as a reference for lecturers to search for ways to design appropriate teaching approaches for better learning experiences.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sachin Nedungadi ◽  
Michael D. Mosher ◽  
Sue Hyeon Paek ◽  
Richard M. Hyslop ◽  
Corina E. Brown

Abstract The fundamental concepts for organic reaction mechanisms inventory (FC-ORMI) is a multiple-choice instrument designed to assess students’ conception of fundamental concepts for understanding organic reaction mechanisms. The concepts were identified from open-ended interviews and a national survey of organic chemistry instructors reported in a previous study. This manuscript describes the development of the inventory items related to these identified concepts and the psychometric analysis of the instrument. In the developmental stage, open-ended questions were administered to first-semester organic chemistry students (N = 138), and open-ended interviews were conducted with students (N = 22) from the same pool to gain insight into their thought processes. The answers revealed alternate conceptions which were used to formulate distractors for the inventory. A pilot version and a beta version of the inventory were administered to 105 and 359 first-semester organic chemistry students, respectively. From these administrations, the 26-item alpha version was developed and administered to first-semester undergraduate organic chemistry students (N = 753). Psychometric analysis was conducted at the item and test level using Classical Test Theory and Rasch analysis. The results indicate that the items on the FC-ORMI function well to reveal students’ alternate conceptions. The instrument meets the acceptable standards of validity and reliability for concept inventories.


2021 ◽  
Vol 6 (4) ◽  
pp. 191-201
Author(s):  
Abdulmalik Sabitu ◽  
Othman Talib ◽  
Nurzatulshima Kamaruddin ◽  
Norizah AbdulRahman

This article reported the findings of a study carried out to investigate the need for developing an organic reaction mechanism teaching model. Qualitative data was obtained through a semi-structured interview among five chemistry subject matter experts to explore their opinion on the issues centered on the teaching and learning of organic reaction mechanisms. The interviews were interpreted and analyzed using thematic analysis. Five themes comprising of many codes and quotations were identified. The analysis of the findings shows that organic reaction mechanisms are one of the most significant and central concepts in science. However, students are faced with challenges in learning the concepts. Thus, the need for an alternative model of teaching the concept of organic reaction mechanisms.


Sign in / Sign up

Export Citation Format

Share Document