Influence of growth and environmental conditions on cell surface hydrophobicity ofPseudomonas fluorescensin non-specific adhesion

1999 ◽  
Vol 46 (1) ◽  
pp. 28-37 ◽  
Author(s):  
T K Jana ◽  
A K Srivastava ◽  
K Csery ◽  
D K Arora

The relative cell surface hydrophobicity (CSH) of 18 soil isolates of Pseudomonas fluorescens, determined by phase exclusion, hydrophobic interaction chromatography (HIC), electrostatic interaction chromatography (ESIC), and contact angle, revealed large degrees of variability. Variation in the adhesion efficiency to Macrophomina phaseolina of the hyphae/sclerotia of these isolates was also examined. Two such isolates with maximum (32.8%; isolate 12-94) and minimum (12%; isolate 30-94) CSH were selected for further study. Early- to mid-log exponential cells of these isolates were more hydrophobic than those in stationary phase, and the CSH of these isolates was also influenced by fluctuations in temperatures and pH. Isolate 12-94 exhibited high CSH (32.3%) at 30°C, compared to lower values (28-24%) in the higher temperature range (35-40°C). Increasing concentrations of either Zn2+, Fe3+, K+, and Mg2+in the growth medium were associated with the increased CSH. Trypsin, pepsin, and proteinase K (75 to 150 μg·mL-1) reduced the CSH of isolate 12-94 cells. CSH was reduced, following exposure to DTT, SDS, Triton X-100, or Tween 80. Prolonged exposure of cells to starvation (60 days) also caused a significant decline in CSH. Several protein bands (18, 21, 23, 26 kDa) of the outer cell membrane were absent in 60-day starved cells compared to unstarved cells. In conclusion, our findings demonstrate that CSH of P. fluorescens isolates may contribute to non-specific attachment/adhesion onto M. phaseolina hyphae/sclerotia, and the efficiency of adhesion is regulated by growth and other environmental conditions. Key words: adhesion, hydrophobicity, Pseudomonas fluorescens, Macrophomina phaseolina

Molecules ◽  
2019 ◽  
Vol 24 (17) ◽  
pp. 3021 ◽  
Author(s):  
Dan Wang ◽  
Jiahui Lin ◽  
Junzhang Lin ◽  
Weidong Wang ◽  
Shuang Li

The biodegradation of petroleum hydrocarbons has many potential applications and has attracted much attention recently. The hydrocarbon-degrading bacterium BL-27 was isolated from petroleum-polluted soil and was compounded with surfactants to improve biodegradation. Its 16S rDNA and rpoD gene sequences indicated that it was a strain of Bacillus subtilis. Strain BL-27 had extensive adaptability and degradability within a broad range of temperatures (25–50 °C), pH (4.0–10.0) and salinity (0–50 g/L NaCl). Under optimal conditions (45 °C, pH 7.0, 1% NaCl), the strain was able to degrade 65% of crude oil (0.3%, w/v) within 5 days using GC-MS analysis. Notably, strain BL-27 had weak cell surface hydrophobicity. The adherence rate of BL-27 to n-hexadecane was 29.6% with sucrose as carbon source and slightly increased to 33.5% with diesel oil (0.3%, w/v) as the sole carbon source, indicating that the cell surface of BL-27 is relatively hydrophilic. The strain was tolerant to SDS, Tween 80, surfactin, and rhamnolipids at a concentration of 500 mg/L. The cell surface hydrophobicity reduced more with the addition of surfactants, while the chemical dispersants, SDS (50–100 mg/L) and Tween 80 (200–500 mg/L), significantly increased the strain’s ability to biodegrade, reaching 75–80%. These results indicated that BL-27 has the potential to be used for the bioremediation of hydrocarbon pollutants and could have promising applications in the petrochemical industry.


1998 ◽  
Vol 37 (4-5) ◽  
pp. 527-530 ◽  
Author(s):  
Hilde Lemmer ◽  
George Lind ◽  
Margit Schade ◽  
Birgit Ziegelmayer

Non-filamentous hydrophobic scum bacteria were isolated from scumming wastewater treatment plants (WWTP) by means of adhesion to hydrocarbons. They were characterized with respect to taxonomy, substrate preferences, cell surface hydrophobicity, and emulsification capability. Their role during flotation events is discussed. Rhodococci are selected by hydrolysable substrates and contribute to flotation both by cell surface hydrophobicity and emulsifying activity at long mean cell residence times (MCRT). Saprophytic Acinetobacter strains are able to promote flotation by hydrophobicity and producing emulsifying agents under conditions when hydrophobic substrates are predominant. Hydrogenophaga and Acidovorax species as well as members of the Cytophaga/Flavobacterium group are prone to proliferate under low loading conditions and contribute to flotation mainly by emulsification.


Sign in / Sign up

Export Citation Format

Share Document