Future carbon storage in harvested wood products from Ontario’s Crown forests

2008 ◽  
Vol 38 (7) ◽  
pp. 1947-1958 ◽  
Author(s):  
Jiaxin Chen ◽  
Stephen J. Colombo ◽  
Michael T. Ter-Mikaelian ◽  
Linda S. Heath

This analysis quantifies projected carbon (C) storage in harvested wood products (HWP) from Ontario’s Crown forests. The large-scale forest C budget model, FORCARB-ON, was applied to estimate HWP C stock changes using the production approach defined by the Intergovernmental Panel on Climate Change. Harvested wood volume was converted to C mass and allocated to four HWP end-use categories: in use, landfill, energy, and emission. The redistribution of C over time among HWP end-use categories was calculated using a product age-based C-distribution matrix. Carbon emissions for harvest, transport, and manufacturing, as well as emission reductions from the use of wood in place of other construction materials and fossil fuels were not accounted for. Considering the wood harvested from Ontario Crown forests from 1951 to 2000 and the projected harvest from 2001 to 2100, C storage in HWP in use and in landfills is projected to increase by 3.6 Mt·year–1 during 2001–2100, with an additional 1.2 Mt·year–1 burned for energy. Annual additions of C projected for HWP far outweighs the annual increase of C storage in Ontario’s Crown forests managed for harvest, which is projected to increase by 0.1 Mt·year–1 during the same period. These projections indicate that regulated harvest in Ontario results in a steadily increasing C sink in HWP and forests. Uncertainties in HWP C estimation are also discussed.

2019 ◽  
Vol 116 (29) ◽  
pp. 14526-14531 ◽  
Author(s):  
Craig M. T. Johnston ◽  
Volker C. Radeloff

Carbon stored in harvested wood products (HWPs) can affect national greenhouse gas (GHG) inventories, in which the production and end use of HWPs play a key role. The Intergovernmental Panel on Climate Change (IPCC) provides guidance on HWP carbon accounting, which is sensitive to future developments of socioeconomic factors including population, income, and trade. We estimated the carbon stored within HWPs from 1961 to 2065 for 180 countries following IPCC carbon-accounting guidelines, consistent with Food and Agriculture Organization of the United Nations (FAOSTAT) historical data and plausible futures outlined by the shared socioeconomic pathways. We found that the global HWP pool was a net annual sink of 335 Mt of CO2 equivalent (CO2e)⋅y−1 in 2015, offsetting substantial amounts of industrial processes within some countries, and as much as 441 Mt of CO2e⋅y−1 by 2030 under certain socioeconomic developments. Furthermore, there is a considerable sequestration gap (71 Mt of CO2e⋅y−1 of unaccounted carbon storage in 2015 and 120 Mt of CO2e⋅y−1 by 2065) under current IPCC Good Practice Guidance, as traded feedstock is ineligible for national GHG inventories. However, even under favorable socioeconomic conditions, and when accounting for the sequestration gap, carbon stored annually in HWPs is <1% of global emissions. Furthermore, economic shocks can turn the HWP pool into a carbon source either long-term—e.g., the collapse of the USSR—or short-term—e.g., the US economic recession of 2008/09. In conclusion, carbon stored within end-use HWPs varies widely across countries and depends on evolving market forces.


2012 ◽  
Vol 9 (3) ◽  
pp. 3949-4023 ◽  
Author(s):  
G. P. Peters ◽  
S. J. Davis ◽  
R. M. Andrew

Abstract. In a globalised world, the transfer of carbon between regions, either physically or embodied in production, represents a substantial fraction of global carbon emissions. The resulting emission transfers are important for balancing regional carbon budgets and for understanding the drivers of regional emissions. In this paper we synthesise current understanding in two parts: (1) embodied CO2 emissions from the production of goods and services produced in one country but consumed in others, (2) physical carbon flows in fossil fuels, petroleum-derived products, harvested wood products, crops, and livestock. We describe the key differences between studies and provide a consistent set of estimates using the same definitions, modelling framework, and consistent data. We find the largest trade flows of carbon in international trade in 2004 were fossil fuels (2673 MtC, 37% of global emissions), CO2 embodied in traded goods and services (1661 MtC, 22% of global emissions), livestock (651 MtC, 20% of total livestock carbon), crops (522 MtC, 31% of total harvested crop carbon), petroleum-based products (183 MtC, 50% of their total production), and harvested wood products (149 MtC, 40% of total roundwood extraction). We find that for embodied CO2 emissions estimates from independent studies are robust. We found that differences between individual studies is not representative of the uncertainty in consumption-based estimates as different studies use different production-based emission estimates as input and different definitions of allocating emissions to international trade. After adjusting for these issues, results across independent studies converge to give less uncertainty than previously assumed. For physical carbon flows there are relatively few studies to be synthesised, but differences between existing studies are due to the method of allocating to international trade with some studies using "apparent consumption" as opposed to "final consumption" in more comprehensive approaches. While results across studies are robust to be used in further applications, more research is needed to understand the differences between methods and to harmonise definitions for particular applications.


2015 ◽  
Vol 12 (5) ◽  
pp. 1615-1627 ◽  
Author(s):  
J. D. M. Speed ◽  
V. Martinsen ◽  
A. J. Hester ◽  
Ø. Holand ◽  
J. Mulder ◽  
...  

Abstract. Treelines differentiate vastly contrasting ecosystems: open tundra from closed forest. Treeline advance has implications for the climate system due to the impact of the transition from tundra to forest ecosystem on carbon (C) storage and albedo. Treeline advance has been seen to increase above-ground C stocks as low vegetation is replaced with trees but decrease organic soil C stocks as old carbon is decomposed. However, studies comparing across the treeline typically do not account for elevational variation within the ecotone. Here we sample ecosystem C stocks along an elevational gradient (970 to 1300 m), incorporating a large-scale and long-term livestock grazing experiment, in the southern Norwegian mountains. We investigate whether there are continuous or discontinuous changes in C storage across the treeline ecotone, and whether these are modulated by grazing. We find that vegetation C stock decreases with elevation, with a clear breakpoint between the forest line and treeline above which the vegetation C stock is constant. C stocks in organic surface horizons of the soil were higher above the treeline than in the forest, whereas C stocks in mineral soil horizons are unrelated to elevation. Total ecosystem C stocks also showed a discontinuous elevational pattern, increasing with elevation above the treeline (8 g m−2 per metre increase in elevation), but decreasing with elevation below the forest line (−15 g m−2 per metre increase in elevation), such that ecosystem C storage reaches a minimum between the forest line and treeline. We did not find any effect of short-term (12 years) grazing on the elevational patterns. Our findings demonstrate that patterns of C storage across the treeline are complex, and should be taken account of when estimating ecosystem C storage with shifting treelines.


2021 ◽  
Author(s):  
Halil Turgut Sahin ◽  
Yasemin Simsek

The manufacturing of cost-efficient construction materials is at the center of attention these days. The development of engineeringly design products has occurred mostly over the past few decades. However, the term of mineral bonded wood composite is relatively new, covers many of the products, and is used to describe a material that is produced by bonding woody material with mineral-based substrates. At present, millions of tons of bio-based composite materials are now manufactured annually from many wood species. Woods are sustainable and engineeringly have enough performance properties in composite matrix systems for many end-use areas. Thus, their utilization processes and intended uses vary accordingly. But at manufacturing, many variables affect binder hydration in composite structure and the networking/bonding between wood and binder. The mineral bonded wood products are high in density and the appropriate strength in the construction industry, an important advantage to engineering applications appears to lie in their ability to absorb and dissipate mechanical energy. Despite their higher weight-to-strength ratio, especially cement and gypsum bonded wood composites have become popular, for use in many internal and external applications to meet increasingly stringent building design regulations for insulation, and failure in service due to deterioration.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Chihiro Kayo ◽  
Gerald Kalt ◽  
Yuko Tsunetsugu ◽  
Seiji Hashimoto ◽  
Hirotaka Komata ◽  
...  

Abstract Background The stock dynamics of harvested wood products (HWPs) are a relevant component of anthropogenic carbon cycles. Generally, HWP stock increases are treated as carbon removals from the atmosphere, while stock decreases are considered emissions. Among the different approaches suggested by the Intergovernmental Panel on Climate Change (IPCC) for accounting HWPs in national greenhouse gas inventories, the production approach has been established as the common approach under the Kyoto Protocol and Paris Agreement. However, the 24th session of the Conference of the Parties to the United Nations Framework Convention on Climate Change decided that alternative approaches can also be used. The IPCC has published guidelines for estimating HWP carbon stocks and default parameters for the various approaches in the 2006 Guidelines, 2013 Guidance, and 2019 Refinement. Although there are significant differences among the default methods in the three IPCC guidelines, no studies have systematically quantified or compared the results from the different guidelines on a global scale. This study quantifies the HWP stock dynamics and corresponding carbon removals/emissions under each approach based on the default methods presented in each guideline for 235 individual countries/regions. Results We identified relatively good consistency in carbon stocks/removals between the stock-change and the atmospheric flow approaches at a global level. Under both approaches, the methodological and parameter updates in the 2019 Refinement (e.g., considered HWPs, starting year for carbon stocks, and conversion factors) resulted in one-third reduction in carbon removals compared to the 2006 Guidelines. The production approach leads to a systematic underestimation of global carbon stocks and removals because it confines accounting to products derived from domestic harvests and uses the share of domestic feedstock for accounting. The 2013 Guidance and the 2019 Refinement reduce the estimated global carbon removals under the production approach by 15% and 45% (2018), respectively, compared to the 2006 Guidelines. Conclusions Gradual refinements in the IPCC default methods have a considerably higher impact on global estimates of HWP carbon stocks and removals than the differences in accounting approaches. The methodological improvements in the 2019 Refinement halve the global HWP carbon removals estimated in the former version, the 2006 Guidelines.


Author(s):  
Shabir Ahmad Akhoon ◽  
Ashaq Hussain Sofi ◽  
Rayees Ahmad Khan ◽  
Ab. Mateen Tantray ◽  
Seemin Rubab

Renewable energy resources have been investigated as alternatives to fossil fuels. Though the energy density of these renewable sources is not comparable to the fossil fuels, their abundance make them highly interesting. There are three main steps in the renewable energy utilization: harvesting, conversion, and storage. Thus, after harvesting renewable energy, storing this energy is an important aspect for its large-scale end use. Considering the fact that the energy is a basic need for life on earth, there has been a strong scientific temperament towards the renewable energy utilization. The electrical energy storage maintains the key to promote the use of renewable energy. Among the storage devices, the rechargeable lithium ion batteries (LIBs) are the most promising energy storage devices. Among various cathodes proposed for LIBs, the most promising one is the spinel lithium manganese oxide (LiMn2O4). Its non-toxicity, low cost, abundance, and ease of synthesis, besides being environmentally friendly, make it suitable for next generation green LIBs.


2012 ◽  
Vol 9 (8) ◽  
pp. 3247-3276 ◽  
Author(s):  
G. P. Peters ◽  
S. J. Davis ◽  
R. Andrew

Abstract. In a globalised world, the transfer of carbon between regions, either physically or embodied in production, represents a substantial fraction of global carbon emissions. The resulting emission transfers are important for balancing regional carbon budgets and for understanding the drivers of emissions. In this paper we synthesise current understanding in two parts: (1) CO2 emissions embodied in goods and services that are produced in one country but consumed in others, and (2) carbon physically present in fossil fuels, petroleum-derived products, harvested wood products, crops, and livestock products. We describe the key differences between studies and provide a consistent set of estimates using the same definitions, modelling framework, and consistent data. We find the largest trade flows of carbon in international trade in 2004 were fossil fuels (2673 MtC, 37 % of global emissions), CO2 embodied in traded goods and services (1661 MtC, 22 % of global emissions), crops (522 MtC, 31 % of total harvested crop carbon), petroleum-based products (183 MtC, 50 % of their total production), harvested wood products (149 MtC, 40 % of total roundwood extraction), and livestock products (28 MtC, 22 % of total livestock carbon). We find that for embodied CO2 emissions, estimates from independent studies are robust, and that differences between individual studies are not a reflection of the uncertainty in consumption-based estimates, but rather these differences result from the use of different production-based emissions input data and different definitions for allocating emissions to international trade. After adjusting for these issues, results across independent studies converge to give less uncertainty than previously assumed. For physical carbon flows there are relatively few studies to be synthesised, but differences between existing studies are due to the method of allocating to international trade, with some studies using "apparent consumption" as opposed to "final consumption". While results across studies are sufficiently robust to be used in further applications, more research is needed to understand differences and to harmonise definitions for particular applications.


2014 ◽  
Vol 11 (11) ◽  
pp. 15435-15461
Author(s):  
J. D. M. Speed ◽  
V. Martinsen ◽  
A. J. Hester ◽  
Ø. Holand ◽  
J. Mulder ◽  
...  

Abstract. Treelines differentiate vastly contrasting ecosystems: open tundra from closed forest. Treeline advance has implications for the climate system due to the impact of the transition from tundra to forest ecosystem on carbon (C) storage and albedo. Treeline advance has been seen to increase above-ground C stocks as low vegetation is replaced with trees, but decrease organic soil C stocks as old carbon is decomposed. However, studies comparing across the treeline typically do not account for elevational variation within the ecotone. Here we sample ecosystem C stocks along an elevational gradient (970 to 1300 m), incorporating a large-scale and long-term livestock grazing experiment, in the Southern Norwegian mountains. We investigate whether there are continuous or discontinuous changes in C storage across the treeline ecotone, and whether these are modulated by grazing. We find that vegetation C stock decreases with elevation, with a clear breakpoint between the forest line and treeline above which the vegetation C stock is constant. In contrast, C stocks in organic surface horizons of the soil increase linearly with elevation within the study's elevational range, whereas C stocks in mineral soil horizons are unrelated to elevation. Total ecosystem C stocks also showed a discontinuous elevational pattern, increasing with elevation above the treeline (8 g m−2 m−1 increase in elevation), but decreasing with elevation below the forest line (−15 g m−2 m−1 increase in elevation), such that ecosystem C storage reaches a minimum between the forest line and treeline. We did not find any effect of short-term (12 years) grazing on the elevational patterns. Our findings demonstrate that patterns of C storage across the treeline are complex, and should be taken account of when estimating ecosystem C storage with shifting treelines.


Sign in / Sign up

Export Citation Format

Share Document