Long-term impact of liming on growth and vigor of northern hardwoods

2011 ◽  
Vol 41 (6) ◽  
pp. 1295-1307 ◽  
Author(s):  
Robert P. Long ◽  
Stephen B. Horsley ◽  
Thomas J. Hall

Sugar maple (Acer saccharum Marsh.) is a keystone species in the northern hardwood forest, and decline episodes have negatively affected the growth and health of sugar maple in portions of its range over the past 50+ years. Crown health, growth, survival, and flower and seed production of sugar maple were negatively affected by a widespread decline event in the mid-1980s on the unglaciated Allegheny Plateau in northern Pennsylvania. A long-term liming study was initiated in 1985 to evaluate responses to a one-time application of 22.4 Mg·ha–1 of dolomitic limestone in four northern hardwood stands. Over the 23-year period ending in 2008, sugar maple basal area increment (BAINC) increased significantly (P ≤ 0.05) in limed plots from 1995 through 2008, whereas American beech (Fagus grandifolia Ehrh.) BAINC was unaffected. For black cherry (Prunus serotina Ehrh.), the third principal overstory species, BAINC and survival were reduced in limed plots compared with unlimed plots. Foliar Ca and Mg remained significantly higher in sugar maple foliage sampled 21 years after lime application, showing persistence of the lime effect. These results show long-term species-specific responses to lime application.

2009 ◽  
Vol 39 (12) ◽  
pp. 2273-2282 ◽  
Author(s):  
Louis Duchesne ◽  
Rock Ouimet

Recently, sugar maple ( Acer saccharum Marsh.) decline in northeastern North America has been regarded as a major factor structuring hardwood forests by favouring American beech ( Fagus grandifolia Ehrh.) in the understory of maple-dominated stands. To determine whether soil fertility differences associated with sugar maple decline may have promoted the expansion of American beech, we explored the relationships between the soil base status and the sapling and tree strata density and composition, using data from 426 permanent sample plots distributed throughout Quebec. Our results indicate that American beech is currently expanding in the sugar maple range of Quebec. The abundance and proportion of American beech in the sapling stratum are mainly associated with the proportion of American beech in the tree stratum, the relative basal area of dead sugar maple trees, and the base status of soils. In accordance with the many studies reporting on the high sensitivity of sugar maple to the acid–base status of soils and the decline of the sugar maple population, this study supports the hypothesis that soil base cation depletion, caused in part by atmospheric acid deposition, is among the main factors involved in the present-day expansion of American beech over a large area in Quebec.


2007 ◽  
Vol 24 (1) ◽  
pp. 14-21 ◽  
Author(s):  
Jodi A. Forrester ◽  
Kimberly K. Bohn

Abstract Forest management in northern hardwoods benefits from the use of site preparation treatments when the amount of American beech (Fagus grandifolia Ehrh.) and fern species in the understory interferes with regeneration of more desirable species, e.g., sugar maple (Acer saccharum Marshall). We assessed the cover and diversity of herbaceous and woody species in the ground layer of three Adirondack northern hardwood stands before and 3 years after a mechanical site preparation that removed all trees less than 14 cm with a brush saw. The treatment significantly increased the cover of all species cumulatively, with herbaceous, shrub, and arborescent species increasing significantly more in treated plots than in untreated plots. Sugar maple cover increased more in treated plots than in untreated plots, although American beech did as well. Species richness increased significantly more in treated plots than in untreated plots, but differences in diversity and evenness were not significantly different because of treatment after 3 years. Multivariate analysis indicated only minor changes in the plant community composition. Results show that mechanical site preparation techniques are a viable option for promoting abundance and maintaining diversity of the ground-layer vegetation in northern hardwood forests.


1984 ◽  
Vol 62 (12) ◽  
pp. 2425-2428 ◽  
Author(s):  
Uldis Roze

Winter feeding of individual porcupines (Erethizon dorsatum L.) was studied in the northern Catskill Mountains of New York by following individual feeding trails in the snow. The study population as a whole fed primarily on beech (Fagus grandifolia) and sugar maple (Acer saccharum) and less frequently on eight other tree species. Individual porcupines limited their feeding to one or two species. An individual's primary food choice corresponded to the numerically most abundant tree species in its foraging area; its secondary food choice could not be related to relative density nor to relative basal area.


Author(s):  
Robert P. Long ◽  
Scott W. Bailey ◽  
Stephen B. Horsley ◽  
Thomas J. Hall

The longevity of a single 22.4 Mg ha<sup>-1</sup> application of dolomitic limestone at four northern hardwood stands was evaluated over thirty years (1986-2016) to determine whether changes in soils, foliage, and tree growth were sustained on the unglaciated Allegheny Plateau in northern Pennsylvania, USA. In limed plots, soils, sampled to 45-55 cm depth, and sugar maple (<i>Acer saccharum</i> Marsh.) and black cherry (<i>Prunus serotina</i> Ehrh.) foliage had significantly ( P ≤ 0.05) greater concentrations of calcium (Ca) and magnesium (Mg) through 2016 compared with samples from unlimed plots. Calcium and Mg capitals (g m<sup>-2</sup>) in the Oi through A horizon combined were greater on limed plots than unlimed plots, largely due to increases in the thickness and nutrient concentration in the A horizon. Over 30-years, sugar maple basal area increment (cm<sup>2</sup> yr<sup>-1</sup> BAINC) ) was greater in limed plots, American beech (<i>Fagus grandifolia</i> Ehrh.) BAINC was unaffected, and black cherry BAINC was reduced in limed plots compared with unlimed plots. The sustained effect of this one-time lime treatment shows the strong role of efficient nutrient cycling in forests and suggests that the benefits over a substantial portion of a stand rotation may increase the feasibility of operational liming.


2021 ◽  
Vol 97 (02) ◽  
pp. 204-218
Author(s):  
Mohammed Henneb ◽  
Gaetan Pelletier ◽  
Mathieu Fortin ◽  
Nelson Thiffault ◽  
Marie-Andrée Giroux

Natural forest regeneration after natural or anthropogenic disturbance is difficult to predict given its high variability. The process is poorly documented for commercial northern hardwood species in the Acadian forest of eastern Canada. Our objective was to identify the silvicultural, environmental, and ecological factors that best explain the variability in sapling density and occurrence of two commercial tolerant hardwood species in New Brunswick: American beech (Fagus grandifolia Ehrh.) and sugar maple (Acer saccharum Marsh.). Forty-three permanent sample plots were established in 2002 and measured before harvesting in 2004. Sapling density and occurrence were measured 14 years after harvesting. The results showed that the interactions between the species and the residual merchantable basal area and between the species and the percent of hardwoods in the original stand best explained the sapling density and occurrence variation of tolerant hardwoods. The sapling density of sugar maple increased with increasing merchantable residual basal area. However, the effect of this variable was not significant for the density of American beech saplings. The density and occurrence of tolerant hardwood saplings both increased along with the percent of hardwoods in the original stand. These results provide an improved understanding about tolerant hardwood regeneration dynamics in New Brunswick forests.


2021 ◽  
Vol 479 ◽  
pp. 118541
Author(s):  
Catherine R. Henry ◽  
Michael B. Walters ◽  
Andrew O. Finley ◽  
Gary J. Roloff ◽  
Evan J. Farinosi

2011 ◽  
Vol 28 (1) ◽  
pp. 27-35 ◽  
Author(s):  
David Ray ◽  
Ruth D. Yanai ◽  
Ralph D. Nyland ◽  
Terry R. McConnell

Abstract The amount of growing space occupied by trees of given sizes and species is traditionally assessed on a plot basis, using observations from groups of trees growing within an area of fixed size. Our study combines individual-tree with plot-based observations of upper-canopy trees representing a range of shade tolerance (Fagus grandifolia ≥ Acer saccharum > Betula alleghaniensis ≥ Fraxinus americana) in three young, fully stocked, even-aged northern hardwood stands. The amount of canopy growing space used by a stem of given size was described by the ratios of crown projection area and crown surface area to stem basal area. These variables were related to species, stand, and relative basal area using analysis of covariance. Both ratios were generally highest in the youngest (19 years) stand, intermediate in the mid-aged stand (24 years), and lowest in the oldest stand (29 years). A few differences were detected among species, with shade-tolerants having larger ratios. Allometric models were used in conjunction with plot density data to estimate canopy cover at the stand level. Considerable crown overlap was indicated among upper-canopy trees in all three stands. Estimates from tree-centered plots suggested that crowns occupied 1.81 ± 0.02 times the ground area in the youngest stand and 1.45 ± 0.03 times in the mid-aged and oldest stands; when corrected for sampling bias, these ratios were at least 1.30 and 0.96, respectively. Combining individual-tree with plot-level measurements afforded a comprehensive assessment of trends in growing-space occupancy not possible using either technique alone.


2011 ◽  
Vol 28 (1) ◽  
pp. 50-53 ◽  
Author(s):  
Eric J. Holzmueller ◽  
John W. Groninger ◽  
Charles M. Ruffner ◽  
Trevor B. Ozier

Abstract Light harvesting and no cutting are two common management regimes in oak-dominated forests in the Ozark Hills of southern Illinois. We compared changes in overstory stand composition between 1980 and 2000 among forest inventory plots that were lightly harvested after initial sampling and plots that were uncut during the same time period. Total white oak (Quercus alba L.) basal area increased for both management regimes. Black oak (Quercus velutina Lam.) overstory density decreased, and sugar maple (Acer saccharum Marsh.) and American beech (Fagus grandifolia Ehrh.) density increased for both management regimes. Although overall density of oak was maintained by both management regimes, species and diameter class-specific response varied. Additional silvicultural activities may be necessary to sustain oak in both lightly harvested and uncut plots, with light harvesting providing opportunities to at least partially offset costs.


2006 ◽  
Vol 36 (7) ◽  
pp. 1834-1841 ◽  
Author(s):  
Jean-David Moore ◽  
Rock Ouimet

In a base-poor northern hardwood stand in Quebec, subjected to high acid deposition, sugar maple (Acer saccharum Marsh.) nutrition, growth, and crown vigor were evaluated 10 years after application of 0–50 t·ha–1 of CaMg(CO3)2 in 1994. One decade after treatment, foliar calcium and magnesium concentrations of sugar maple were still higher for treated than for control trees. The analysis of foliar nutrient indices showed that liming improved the nutrition of nitrogen and calcium, but caused imbalance of phosphorus, potassium, and magnesium. In 2004, crown dieback was much lower for limed trees (0.5%–4.5%) as compared to unlimed trees (23.7%). When compared with crown dieback before treatment, dieback of limed trees generally had decreased by 2004, while dieback of untreated maple trees increased over the 1994–2004 period. In 2004, basal area increment for limed trees was nearly double that of unlimed trees. However, no difference was detectable among trees limed at different rates. Midterm efficacy of liming in this study was demonstrated by the improvement of sugar maple calcium nutrition, crown vigor, and stem growth 10 years following treatment. This confirms the potential of liming to limit damage caused by acid deposition in base-poor and declining northern hardwood stands.


Forests ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 588 ◽  
Author(s):  
Edouard Moreau ◽  
Steve Bédard ◽  
Guillaume Moreau ◽  
David Pothier

Many northern hardwood stands include several low-vigor trees as a result of past management. To restore these degraded stands, partial cuts are applied with partly validated tree classification systems that are based upon apparent stem defects. We sampled 214 sugar maple (Acer saccharum Marsh.) and 84 yellow birch (Betula alleghaniensis Britt.) trees from six sites covering the northern hardwood forest zone of the Province of Quebec, Canada. We evaluated their vigor with a four-class system, and quantified the growth efficiency index and several indices that were based solely upon radial growth. The growth efficiency index increased non-significantly with increasing tree vigor class. The five-year basal area increment (BAI-1-5) was significantly different between the lowest and highest tree vigor classes. Yet, temporal changes in BAI-1-5 helped classify correctly only 16% of high-vigor trees that became poorly vigorous 8–10 years later. Overall, these results suggest that the tree classification system is weakly related to actual tree vigor and its application likely generates few significant gains in future stand vigor. Modifying and simplifying the tree vigor system must be considered to facilitate the tree marking process that is required to improve the vigor of degraded stands.


Sign in / Sign up

Export Citation Format

Share Document