Thirty-year effects of liming on soil and foliage chemistry and growth of northern hardwoods in Pennsylvania, USA

Author(s):  
Robert P. Long ◽  
Scott W. Bailey ◽  
Stephen B. Horsley ◽  
Thomas J. Hall

The longevity of a single 22.4 Mg ha<sup>-1</sup> application of dolomitic limestone at four northern hardwood stands was evaluated over thirty years (1986-2016) to determine whether changes in soils, foliage, and tree growth were sustained on the unglaciated Allegheny Plateau in northern Pennsylvania, USA. In limed plots, soils, sampled to 45-55 cm depth, and sugar maple (<i>Acer saccharum</i> Marsh.) and black cherry (<i>Prunus serotina</i> Ehrh.) foliage had significantly ( P ≤ 0.05) greater concentrations of calcium (Ca) and magnesium (Mg) through 2016 compared with samples from unlimed plots. Calcium and Mg capitals (g m<sup>-2</sup>) in the Oi through A horizon combined were greater on limed plots than unlimed plots, largely due to increases in the thickness and nutrient concentration in the A horizon. Over 30-years, sugar maple basal area increment (cm<sup>2</sup> yr<sup>-1</sup> BAINC) ) was greater in limed plots, American beech (<i>Fagus grandifolia</i> Ehrh.) BAINC was unaffected, and black cherry BAINC was reduced in limed plots compared with unlimed plots. The sustained effect of this one-time lime treatment shows the strong role of efficient nutrient cycling in forests and suggests that the benefits over a substantial portion of a stand rotation may increase the feasibility of operational liming.

2000 ◽  
Vol 30 (9) ◽  
pp. 1365-1378 ◽  
Author(s):  
Stephen B Horsley ◽  
Robert P Long ◽  
Scott W Bailey ◽  
Richard A Hallett ◽  
Thomas J Hall

Mortality of sugar maple (Acer saccharum Marsh.) has reached unusually high levels across northern Pennsylvania since the early to mid-1980s. We evaluated the influence of glaciation, topographic position, foliage chemistry, defoliation history, and stand characteristics (species composition, structure, density) on the health of sugar maple in 43 stands at 19 sites on the northern Allegheny Plateau. Using percent dead sugar maple basal area as the measure of health, we found that all moderately to severely declining stands were on unglaciated summits, shoulders, or upper backslopes. Stands on glaciated sites and unglaciated lower topographic positions were not declining. The most important factors associated with sugar maple health were foliar levels of Mg and Mn and defoliation history. The lowest foliar Mg, highest foliar Mn, and highest number and severity of insect defoliations were associated with unglaciated summits, shoulders, and upper backslopes. Declining stands had less than ~700 mg·kg-1 Mg and two or more moderate to severe defoliations in the past 10 years; both conditions were associated with moderately to severely declining stands. The decline disease of sugar maple seems to result from an interaction between Mg (and perhaps Mn) nutrition and stress caused by defoliation.


2009 ◽  
Vol 39 (12) ◽  
pp. 2273-2282 ◽  
Author(s):  
Louis Duchesne ◽  
Rock Ouimet

Recently, sugar maple ( Acer saccharum Marsh.) decline in northeastern North America has been regarded as a major factor structuring hardwood forests by favouring American beech ( Fagus grandifolia Ehrh.) in the understory of maple-dominated stands. To determine whether soil fertility differences associated with sugar maple decline may have promoted the expansion of American beech, we explored the relationships between the soil base status and the sapling and tree strata density and composition, using data from 426 permanent sample plots distributed throughout Quebec. Our results indicate that American beech is currently expanding in the sugar maple range of Quebec. The abundance and proportion of American beech in the sapling stratum are mainly associated with the proportion of American beech in the tree stratum, the relative basal area of dead sugar maple trees, and the base status of soils. In accordance with the many studies reporting on the high sensitivity of sugar maple to the acid–base status of soils and the decline of the sugar maple population, this study supports the hypothesis that soil base cation depletion, caused in part by atmospheric acid deposition, is among the main factors involved in the present-day expansion of American beech over a large area in Quebec.


2011 ◽  
Vol 41 (6) ◽  
pp. 1295-1307 ◽  
Author(s):  
Robert P. Long ◽  
Stephen B. Horsley ◽  
Thomas J. Hall

Sugar maple (Acer saccharum Marsh.) is a keystone species in the northern hardwood forest, and decline episodes have negatively affected the growth and health of sugar maple in portions of its range over the past 50+ years. Crown health, growth, survival, and flower and seed production of sugar maple were negatively affected by a widespread decline event in the mid-1980s on the unglaciated Allegheny Plateau in northern Pennsylvania. A long-term liming study was initiated in 1985 to evaluate responses to a one-time application of 22.4 Mg·ha–1 of dolomitic limestone in four northern hardwood stands. Over the 23-year period ending in 2008, sugar maple basal area increment (BAINC) increased significantly (P ≤ 0.05) in limed plots from 1995 through 2008, whereas American beech (Fagus grandifolia Ehrh.) BAINC was unaffected. For black cherry (Prunus serotina Ehrh.), the third principal overstory species, BAINC and survival were reduced in limed plots compared with unlimed plots. Foliar Ca and Mg remained significantly higher in sugar maple foliage sampled 21 years after lime application, showing persistence of the lime effect. These results show long-term species-specific responses to lime application.


1984 ◽  
Vol 62 (12) ◽  
pp. 2425-2428 ◽  
Author(s):  
Uldis Roze

Winter feeding of individual porcupines (Erethizon dorsatum L.) was studied in the northern Catskill Mountains of New York by following individual feeding trails in the snow. The study population as a whole fed primarily on beech (Fagus grandifolia) and sugar maple (Acer saccharum) and less frequently on eight other tree species. Individual porcupines limited their feeding to one or two species. An individual's primary food choice corresponded to the numerically most abundant tree species in its foraging area; its secondary food choice could not be related to relative density nor to relative basal area.


2021 ◽  
Vol 97 (02) ◽  
pp. 204-218
Author(s):  
Mohammed Henneb ◽  
Gaetan Pelletier ◽  
Mathieu Fortin ◽  
Nelson Thiffault ◽  
Marie-Andrée Giroux

Natural forest regeneration after natural or anthropogenic disturbance is difficult to predict given its high variability. The process is poorly documented for commercial northern hardwood species in the Acadian forest of eastern Canada. Our objective was to identify the silvicultural, environmental, and ecological factors that best explain the variability in sapling density and occurrence of two commercial tolerant hardwood species in New Brunswick: American beech (Fagus grandifolia Ehrh.) and sugar maple (Acer saccharum Marsh.). Forty-three permanent sample plots were established in 2002 and measured before harvesting in 2004. Sapling density and occurrence were measured 14 years after harvesting. The results showed that the interactions between the species and the residual merchantable basal area and between the species and the percent of hardwoods in the original stand best explained the sapling density and occurrence variation of tolerant hardwoods. The sapling density of sugar maple increased with increasing merchantable residual basal area. However, the effect of this variable was not significant for the density of American beech saplings. The density and occurrence of tolerant hardwood saplings both increased along with the percent of hardwoods in the original stand. These results provide an improved understanding about tolerant hardwood regeneration dynamics in New Brunswick forests.


2011 ◽  
Vol 28 (1) ◽  
pp. 50-53 ◽  
Author(s):  
Eric J. Holzmueller ◽  
John W. Groninger ◽  
Charles M. Ruffner ◽  
Trevor B. Ozier

Abstract Light harvesting and no cutting are two common management regimes in oak-dominated forests in the Ozark Hills of southern Illinois. We compared changes in overstory stand composition between 1980 and 2000 among forest inventory plots that were lightly harvested after initial sampling and plots that were uncut during the same time period. Total white oak (Quercus alba L.) basal area increased for both management regimes. Black oak (Quercus velutina Lam.) overstory density decreased, and sugar maple (Acer saccharum Marsh.) and American beech (Fagus grandifolia Ehrh.) density increased for both management regimes. Although overall density of oak was maintained by both management regimes, species and diameter class-specific response varied. Additional silvicultural activities may be necessary to sustain oak in both lightly harvested and uncut plots, with light harvesting providing opportunities to at least partially offset costs.


2015 ◽  
Vol 45 (6) ◽  
pp. 632-638 ◽  
Author(s):  
Kim Bannon ◽  
Sylvain Delagrange ◽  
Nicolas Bélanger ◽  
Christian Messier

Studies have reported divergent results on the effect of soil fertility and canopy opening on understory density and growth of sugar maple (AS; Acer saccharum Marsh.) and American beech (FG; Fagus grandifolia Ehrh.). The main objective of this study was to evaluate the effect of a gradient of canopy opening and soil fertility on the density and growth of AS and FG saplings in southwestern Quebec, Canada. We investigated 56 stands containing both AS and FG that were subjected to different disturbance history types (DHTs) (UF, unmanaged forest; PC, partial cut; and CC, clearcut) on various soil types. AS and FG absolute and relative sapling density varied greatly among the 56 stands; however, no significant effects of DHT, soil nutrient availability, or their interaction were found. Both species responded positively in terms of radial growth to canopy openings, with FG growth being slightly better than AS growth in PC stands compared with other canopy treatments. Contrary to our hypothesis, AS did not show significantly higher growth than FG following clear-cutting. These results do not support the idea that AS abundance and growth could be promoted by increasing the intensity of the canopy opening during harvest, at least on the generally acidic and base-poor soils that were investigated.


2007 ◽  
Vol 24 (1) ◽  
pp. 14-21 ◽  
Author(s):  
Jodi A. Forrester ◽  
Kimberly K. Bohn

Abstract Forest management in northern hardwoods benefits from the use of site preparation treatments when the amount of American beech (Fagus grandifolia Ehrh.) and fern species in the understory interferes with regeneration of more desirable species, e.g., sugar maple (Acer saccharum Marshall). We assessed the cover and diversity of herbaceous and woody species in the ground layer of three Adirondack northern hardwood stands before and 3 years after a mechanical site preparation that removed all trees less than 14 cm with a brush saw. The treatment significantly increased the cover of all species cumulatively, with herbaceous, shrub, and arborescent species increasing significantly more in treated plots than in untreated plots. Sugar maple cover increased more in treated plots than in untreated plots, although American beech did as well. Species richness increased significantly more in treated plots than in untreated plots, but differences in diversity and evenness were not significantly different because of treatment after 3 years. Multivariate analysis indicated only minor changes in the plant community composition. Results show that mechanical site preparation techniques are a viable option for promoting abundance and maintaining diversity of the ground-layer vegetation in northern hardwood forests.


2001 ◽  
Vol 18 (2) ◽  
pp. 46-54 ◽  
Author(s):  
Jeffrey D. Kochenderfer ◽  
Shepard M. Zedaker ◽  
James E. Johnson ◽  
David Wm. Smith ◽  
Gary W. Miller

Abstract Chemical crop tree release treatments were applied to young hardwood stands at three sites in central West Virginia to evaluate the effectiveness of glyphosate as Accord (41.5% SL), imazapyr as Arsenal AC (53.1% SL) and Chopper (27.6% EC), and triclopyr as Garlon 3A (44.4% triethylamine salt SL), and Garlon 4 (61.6% butoxyethyl ester EC) using hack-and-squirt injection and low volume stem bark band application methods. American beech (Fagus grandifolia Ehrh.) was a major competitor to black cherry (Prunus serotina Ehrh.) crop trees at each site. The treatments were applied in June and evaluated 12 months after treatment. A numerical rating system ranging from 1 to 7 (0–100% crown affected), which utilized visual symptoms, was used to evaluate the efficacy of each treatment. Trees receiving a rating of 5 (75% crown control) or greater were considered controlled.After 12 months, almost complete control (99+%) was achieved with the Accord, Garlon 3A, and Arsenal AC injection treatments across all study sites. The low volume stem bark band treatments used in this study were not effective. The imazapyr treatments adversely affected several crop trees and are not recommended for hardwood crop tree release. Some crop tree damage was inflicted by the Accord treatments, but when suggested guidelines are followed, Accord is recommended for crop tree release treatments. No crop tree damage was observed in the Garlon 3A treatments. The costs of the injection treatments expressed in dollars/ft2 of basal area controlled were as follows: Accord ($0.91), Garlon 3A ($1.04), and Arsenal AC ($0.84). The Northeast Decision Model Stand Inventory Processor using the NE-TWIGS growth simulator was used to predict the future composition and value of projected stands. The stem injection treatments more than doubled projected growth of black cherry basal area. Real rates of return for investment in weed tree control averaged 8.77% for stem injection treatments. This study indicates that chemical crop tree release treatments using stem injection with label recommended solutions of Accord or Garlon 3A are an effective way to increase the future value of Appalachian hardwood stands. North. J. Appl. For. 18(2):46–54.


2011 ◽  
Vol 28 (2) ◽  
pp. 84-91 ◽  
Author(s):  
Matthew B. Russell ◽  
Aaron R. Weiskittel

Abstract An extensive statewide data set for seven conifer and eight hardwood species commonly occurring in Maine was used in the development of maximum and largest crown width equations. To establish the characteristics of open-grown trees, quantile regression was used to estimate the biological maximum crown width for a species at a given diameter. To predict crown widths of trees in forested settings, a constrained nonlinear equation was used, using the predicted maximum crown width, tree diameter, and crown ratio. The models performed well across the wide range of stand conditions present in the data set and improved predictions over the currently used crown width equations for most species (reduction of mean absolute error ranged from 1 to 23%). In general, predictions of largest crown width were not greatly improved with the inclusion of crown ratio, and there was a high amount of unexplained variation for shade-tolerant hardwood species, such as American beech (Fagus grandifolia) and sugar maple (Acer saccharum). The equations presented herein can be used in examining tree crown profiles, computing measurements of stand density, and investigating canopy dynamics for species common to the forests of Maine.


Sign in / Sign up

Export Citation Format

Share Document