Natural disturbance emulation in boreal forest ecosystem management — theories, strategies, and a comparison with conventional even-aged management1This article is one of a selection of papers from the 7th International Conference on Disturbance Dynamics in Boreal Forests.

2012 ◽  
Vol 42 (7) ◽  
pp. 1185-1203 ◽  
Author(s):  
Timo Kuuluvainen ◽  
Russell Grenfell

Natural disturbance emulation (NDE) has been proposed as a general approach to ecologically sustainable forest management. We reviewed the concepts, theories, and strategies related to NDE in boreal forest management. We also reviewed publications that discussed NDE in the boreal forest in general and those that specifically compared NDE-based management with conventional even-aged management. The papers generally focused on northern North America and landscape-scale wildfire as the main disturbance factor, whereas information from Eurasia was exclusively theoretical. Within this limited scope, NDE was generally found to have a positive effect on biodiversity in terms of forest structure and species diversity when compared with conventional even-aged management. Studies on timber supply and social implications of NDE were so few that they preclude generalizations. We conclude that the ecological and economic performance of NDE as a management approach still remains poorly examined. To advance the development of NDE, particular attention should be given to (1) augmenting the knowledge base on natural range of variability of unmanaged forest ecosystems and evaluating the validity of this information in a changing climate, (2) fostering multidisciplinary research with better integration of ecological theory to both integrative and analytical research on NDE, and (3) better integration of socioeconomic concerns, adaptive management schemes, and international collaboration into NDE initiatives.

2021 ◽  
Vol 97 (02) ◽  
pp. 168-178
Author(s):  
Michael T. Ter-Mikaelian ◽  
Stephen J. Colombo ◽  
Jiaxin Chen

We used models to project forest carbon stocks for a series of harvesting scenarios for 29 boreal forest management units totalling 23.3 million ha in Ontario, Canada. Scenarios evaluated for 2020 to 2050 ranged from a no harvesting option to annual harvesting of 2% of the total merchantable volume present in 2020. For each scenario, we estimated the following carbon quantities: (a) forest ecosystem carbon stocks, (b) sum of carbon stocks in forest ecosystem and harvested wood products (HWP) minus emissions associated with HWP production and decomposition, and (c) net greenhouse gas (GHG) effects of harvesting estimated as (b) combined with emissions avoided by substituting HWP for non-wood materials. The average of each carbon quantity for 2020 to 2050 was linearly dependent on the annual harvest volume. The developed relationships were used to estimate harvest volumes for which the three carbon quantities would equal equilibrium forest ecosystem carbon stocks for a pre-suppression natural disturbance cycle. These estimates indicate the range of harvest volumes for which resulting carbon stocks would equal or exceed those in an unmanaged forest. Also discussed are possible criteria for determining annual harvest volume.


2007 ◽  
Vol 83 (3) ◽  
pp. 326-337 ◽  
Author(s):  
Yves Bergeron ◽  
Pierre Drapeau ◽  
Sylvie Gauthier ◽  
Nicolas Lecomte

Several concepts are at the basis of forest ecosystem management, but a relative consensus exists around the idea of a forest management approach that is based on natural disturbances and forest dynamics. This type of approach aims to reproduce the main attributes of natural landscapes in order to maintain ecosystems within their natural range of variability and avoid creating an environment to which species are not adapted. By comparing attributes associated with natural fire regimes and current forest management, we were able to identify four major differences for the black spruce forest of the Clay Belt. The maintenance of older forests, the spatial extent of cutover areas, the maintenance of residuals within cutovers and disturbance severity on soils are major issues that should be addressed. Silvicultural strategies that mitigate differences between natural and managed forests are briefly discussed. Key words: natural disturbance, landscape patterns, coarse filter, harvest pattern, volume retention, historic variability, even-aged management


2015 ◽  
Vol 45 (5) ◽  
pp. 567-578 ◽  
Author(s):  
Louis Imbeau ◽  
Martin-Hugues St-Laurent ◽  
Lothar Marzell ◽  
Vincent Brodeur

Long-term exploitation of boreal ecosystems often results in a reduced range of ecological conditions that threatens several species. In most boreal jurisdictions, the northern extent of commercial forestry corresponds to economical rather than ecological considerations. Our general objective is to offer guidance for sustainable boreal forest management by using a biodiversity criterion based on three indicators. The first two indicators are part of a coarse filter referring to the proportion and fragmentation of tall, dense forest habitats, whereas a third one uses a fine filter for specific requirements of boreal caribou. We applied the methodology with and without anthropogenic disturbances on 1114 land districts to contrast the preindustrial potential and current capacity of Quebec’s boreal forest to support forest management. Originally, 826 districts (74%) were above the 20% cutoff value for the minimum proportion of tall, dense forest habitats. Among the 567 districts currently under forest management, 45 did not reach this value because of past anthropogenic disturbances. Originally, 88% of the districts had sufficient undisturbed habitats to maintain caribou populations, but anthropogenic disturbances reduced this proportion to 51%. The proposed methodology could contribute to delineating areas where sustainable forest management can be implemented. Our results also clearly show that management targets of the last decades were insufficient to prevent loss of habitats below strict minimum ecological thresholds. Our approach offers a general framework that could be adapted to other forested regions to attain similar biodiversity conservation objectives.


2007 ◽  
Vol 37 (8) ◽  
pp. 1310-1323 ◽  
Author(s):  
T.P. Cobb ◽  
D.W. Langor ◽  
J.R. Spence

Rising societal demands for forest resources along with existing natural disturbance regimes suggest that sustainable forest management will increasingly depend on better understanding the cumulative effects of natural and anthropogenic disturbances. In North America, for example, there is increasing economic pressure to salvage log burned forests, although the ecological consequences of combining fire and harvesting on the same sites are unclear. We examined the short-term (2 year) responses of boreal forest ground beetles (Coleoptera: Carabidae) to the individual and combined effects of wildfire, harvesting, and herbicide. Ground beetle responses to wildfire and forestry-related disturbances differed strongly and suggested that, although some species may appear to benefit from disturbance combinations (e.g., Sericoda quadripunctata (DeGeer)), these effects are detrimental to others (e.g., Sericoda bembidioides Kirby). Species compositional variability was significantly reduced by disturbance combinations suggesting that multiple disturbances may lead to a simplification of this entire assemblage. In addition, ground beetle responses were correlated with changes in several key habitat parameters such as amount of woody debris, exposed ground, and plant species richness suggesting avenues for future study. Overall, however, our results suggest that efforts to avoid compounding disturbances on any site should be considered when developing current and future forest management guidelines.


2021 ◽  
pp. 1-11
Author(s):  
Michael T. Ter-Mikaelian ◽  
Stephen J. Colombo ◽  
Jiaxin Chen

We used models to project forest carbon stocks for a series of harvesting scenarios for 29 boreal forest management units totalling 23.3 million ha in Ontario, Canada. Scenarios evaluated for 2020 to 2050 ranged from a no harvesting option to annual harvesting of 2% of the total merchantable volume present in 2020. For each scenario, we estimated the following carbon quantities: (a) forest ecosystem carbon stocks, (b) sum of carbon stocks in forest ecosystem and harvested wood products (HWP) minus emissions associated with HWP production and decomposition, and (c) net greenhouse gas (GHG) effects of harvesting estimated as (b) combined with emissions avoided by substituting HWP for non-wood materials. The average of each carbon quantity for 2020 to 2050 was linearly dependent on the annual harvest volume. The developed relationships were used to estimate harvest volumes for which the three carbon quantities would equal equilibrium forest ecosystem carbon stocks for a pre-suppression natural disturbance cycle. These estimates indicate the range of harvest volumes for which resulting carbon stocks would equal or exceed those in an unmanaged forest. Also discussed are possible criteria for determining annual harvest volume.


2008 ◽  
Vol 140 (4) ◽  
pp. 453-474 ◽  
Author(s):  
David W. Langor ◽  
H.E. James Hammond ◽  
John R. Spence ◽  
Joshua Jacobs ◽  
Tyler P. Cobb

AbstractSaproxylic insect assemblages inhabiting dead wood in Canadian forests are highly diverse and variable but quite poorly understood. Adequate assessment of these assemblages poses significant challenges with respect to sampling, taxonomy, and analysis. Their assessment is nonetheless critical to attaining the broad goals of sustainable forest management because such species are disproportionately threatened elsewhere by the reductions in dead wood generally associated with commercial exploitation of northern forests. The composition of the saproxylic fauna is influenced by many factors, including tree species, degree of decay, stand age, and cause of tree death. Wildfire and forest harvesting have differential impacts on saproxylic insect assemblages and on their recovery in postdisturbance stands. Exploration of saproxylic insect responses to variable retention harvesting and experimental burns is contributing to the development of prescriptions for conserving saproxylic insects in boreal forests. Understanding of processes that determine diversity patterns and responses of saproxylic insects would benefit from increased attention to natural history. Such work should aim to provide a habitat-classification system for dead wood to better identify habitats (and associated species) at risk as a result of forest management. This tool could also be used to improve strategies to better maintain saproxylic organisms and their central nutrient-cycling functions in managed forests.


2012 ◽  
Vol 88 (03) ◽  
pp. 298-305 ◽  
Author(s):  
Marine Elbakidze ◽  
Per Angelstam ◽  
Robert Axelsson

The Model Forest is a concept developed to facilitate implementation of sustainable forest management (SFM). The key functions of a Model Forest are to develop innovations and test new ideas related to SFM, driven by the needs, interests and challenges of Model Forest stakeholders and local communities. Russia is an important global actor when it comes to the boreal forest biome and forestry, but also has several challenges related to development of adaptive governance and the introduction of SFM. The purpose of this study is to identify landscape stakeholders—their values, needs and interests— in order to develop and adapt the governance of forest landscapes in the Kovdozersky Model Forest. The location of the Kovdozersky Model Forest in the Barents region presents opportunities for learning between Nordic countries and Russia.


2007 ◽  
Vol 83 (1) ◽  
pp. 61-71 ◽  
Author(s):  
Laurence Bourgeois ◽  
Daniel Kneeshaw ◽  
Louis Imbeau ◽  
Nicolas Bélanger ◽  
Stephen Yamasaki ◽  
...  

In order to receive forest certification and to respond to societal desires, many forest companies are attempting to demonstrate that their forest activities are «sustainable». The main objective of this paper is to qualitatively evaluate the ways in which forestry-related provincial regulations in the three provinces (Alberta, Ontario and Quebec) that contain most of the Canadian boreal forest help forest companies achieve certification with respect to ecological criteria. In the process of continually evolving towards sustainable forest management, we evaluate how these provincial regulations governing forest operations can be helpful in maintaining three criteria: biodiversity, the aquatic environment and soils. This study shows that the regulations evaluated have varied in their approach and thus have different strengths that must be underlined: (1) Ontario's approach is the strongest in terms of biodiversity, (2) Alberta and Ontario provide measures to abandon roads after harvesting, (3) Quebec provides the greatest specific measures for protecting waterways and aquatic species, (4) Alberta shows the greatest consideration for maintaining the most soil properties and functions. Better links between different regulations are necessary in all jurisdictions. The continual improvement of Canadian forest rules is often slow and advances at a different pace depending on regulators but it should be supported in all provinces. Key words: sustainable forest management, biodiversity, aquatic environment, soils, Alberta, Ontario, Quebec


2002 ◽  
Vol 78 (5) ◽  
pp. 665-671 ◽  
Author(s):  
P Lefort ◽  
B Harvey ◽  
J Parton ◽  
G KM Smith

A review of the scientific literature relevant to the Claybelt region was undertaken under the initiative of Lake Abitibi Model Forest (LAMF) and in collaboration with the Canadian Forest Service, the Ontario and Quebec Ministries of Natural Resources and the NSERC-UQAT-UQAM (Natural Sciences and Engineering Research Council – Université du Québec en Abitibi-Témiscamingue – Université du Québec à Montréal) Industrial Chair in Sustainable forest Management. The objective was to synthesize this information in order to develop better forestry practices and identify knowledge and research gaps. Forestry-related knowledge was gathered on six broad topics: i) natural disturbances, ii) forest ecosystems, iii) past and present forest practices, iv) biological diversity, v) forest management and vi) examples of current applications of natural disturbance-based forest management. The work allowed us to synthesize a large body of knowledge into one publication that will be a useful reference for foresters in both provinces. Key words: biodiversity, Claybelt, even-aged/uneven-aged forests, fire, silvicultural practices


Sign in / Sign up

Export Citation Format

Share Document