scholarly journals Harvest volumes and carbon stocks in boreal forests of Ontario, Canada

2021 ◽  
Vol 97 (02) ◽  
pp. 168-178
Author(s):  
Michael T. Ter-Mikaelian ◽  
Stephen J. Colombo ◽  
Jiaxin Chen

We used models to project forest carbon stocks for a series of harvesting scenarios for 29 boreal forest management units totalling 23.3 million ha in Ontario, Canada. Scenarios evaluated for 2020 to 2050 ranged from a no harvesting option to annual harvesting of 2% of the total merchantable volume present in 2020. For each scenario, we estimated the following carbon quantities: (a) forest ecosystem carbon stocks, (b) sum of carbon stocks in forest ecosystem and harvested wood products (HWP) minus emissions associated with HWP production and decomposition, and (c) net greenhouse gas (GHG) effects of harvesting estimated as (b) combined with emissions avoided by substituting HWP for non-wood materials. The average of each carbon quantity for 2020 to 2050 was linearly dependent on the annual harvest volume. The developed relationships were used to estimate harvest volumes for which the three carbon quantities would equal equilibrium forest ecosystem carbon stocks for a pre-suppression natural disturbance cycle. These estimates indicate the range of harvest volumes for which resulting carbon stocks would equal or exceed those in an unmanaged forest. Also discussed are possible criteria for determining annual harvest volume.

2021 ◽  
pp. 1-11
Author(s):  
Michael T. Ter-Mikaelian ◽  
Stephen J. Colombo ◽  
Jiaxin Chen

We used models to project forest carbon stocks for a series of harvesting scenarios for 29 boreal forest management units totalling 23.3 million ha in Ontario, Canada. Scenarios evaluated for 2020 to 2050 ranged from a no harvesting option to annual harvesting of 2% of the total merchantable volume present in 2020. For each scenario, we estimated the following carbon quantities: (a) forest ecosystem carbon stocks, (b) sum of carbon stocks in forest ecosystem and harvested wood products (HWP) minus emissions associated with HWP production and decomposition, and (c) net greenhouse gas (GHG) effects of harvesting estimated as (b) combined with emissions avoided by substituting HWP for non-wood materials. The average of each carbon quantity for 2020 to 2050 was linearly dependent on the annual harvest volume. The developed relationships were used to estimate harvest volumes for which the three carbon quantities would equal equilibrium forest ecosystem carbon stocks for a pre-suppression natural disturbance cycle. These estimates indicate the range of harvest volumes for which resulting carbon stocks would equal or exceed those in an unmanaged forest. Also discussed are possible criteria for determining annual harvest volume.


2013 ◽  
Vol 308 ◽  
pp. 178-187 ◽  
Author(s):  
John B. Bradford ◽  
Nicholas R. Jensen ◽  
Grant M. Domke ◽  
Anthony W. D’Amato

2019 ◽  
Vol 14 (12) ◽  
pp. 125015 ◽  
Author(s):  
Andreas Magerl ◽  
Julia Le Noë ◽  
Karl-Heinz Erb ◽  
Manan Bhan ◽  
Simone Gingrich

Ecosystems ◽  
2014 ◽  
Vol 17 (5) ◽  
pp. 851-863 ◽  
Author(s):  
Meelis Seedre ◽  
Anthony R. Taylor ◽  
Brian W. Brassard ◽  
Han Y. H. Chen ◽  
Kalev Jõgiste

2012 ◽  
Vol 42 (7) ◽  
pp. 1185-1203 ◽  
Author(s):  
Timo Kuuluvainen ◽  
Russell Grenfell

Natural disturbance emulation (NDE) has been proposed as a general approach to ecologically sustainable forest management. We reviewed the concepts, theories, and strategies related to NDE in boreal forest management. We also reviewed publications that discussed NDE in the boreal forest in general and those that specifically compared NDE-based management with conventional even-aged management. The papers generally focused on northern North America and landscape-scale wildfire as the main disturbance factor, whereas information from Eurasia was exclusively theoretical. Within this limited scope, NDE was generally found to have a positive effect on biodiversity in terms of forest structure and species diversity when compared with conventional even-aged management. Studies on timber supply and social implications of NDE were so few that they preclude generalizations. We conclude that the ecological and economic performance of NDE as a management approach still remains poorly examined. To advance the development of NDE, particular attention should be given to (1) augmenting the knowledge base on natural range of variability of unmanaged forest ecosystems and evaluating the validity of this information in a changing climate, (2) fostering multidisciplinary research with better integration of ecological theory to both integrative and analytical research on NDE, and (3) better integration of socioeconomic concerns, adaptive management schemes, and international collaboration into NDE initiatives.


2017 ◽  
Vol 32 (8) ◽  
pp. 717-725 ◽  
Author(s):  
Kristina Mjöfors ◽  
Monika Strömgren ◽  
Hans-Örjan Nohrstedt ◽  
Maj-Britt Johansson ◽  
Annemieke I. Gärdenäs

Author(s):  
Seppo Kellomäki ◽  
Hannu Väisänen ◽  
Miko U F Kirschbaum ◽  
Sara Kirsikka-Aho ◽  
Heli Peltola

Abstract Norway spruce (Picea abies Karst. (L.)) in the boreal zone can be managed as even-aged or uneven-aged stands, or be grown with no management at all. Here, we investigated how these management options affect carbon dynamics, particularly the carbon stocks in the forest ecosystem (trees and soil), and albedo, and their combined effect on radiative forcing compared to a reference case, clear-cut site before planting seedlings. This allowed us to assess the potential of different management regimes to mitigate global warming. We ran long-term simulations under the current climate on a sub-mesic site in central Finland (62oN) using an eco-physiological forest-ecosystem model. Compared to even-aged management, no management (old-growth forest) increased ecosystem carbon stocks by 47 per cent and decreased albedo by 15 per cent, whereas uneven-aged management reduced ecosystem carbon stocks by 16 per cent and increased albedo by 10 per cent. Only the no management option resulted in a significant net cooling effect whereas for even-aged and uneven-aged management, the opposing effects of changes in albedo and carbon stocks largely cancelled each other with little remaining net effect. On the other hand, the latter one even made a small net warming contribution. Overall, maintaining higher ecosystem carbon stocks implied the larger cooling benefits. This was evident even though lower albedo enhanced radiation absorption, and thus warming. Increasing use of the no management option by forest owners may require proper incentives such as compensation for lost harvest incomes.


2018 ◽  
Vol 28 (6) ◽  
pp. 973-985 ◽  
Author(s):  
Hengxing Xiang ◽  
Mingming Jia ◽  
Zongming Wang ◽  
Lin Li ◽  
Dehua Mao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document