Point-Poisson, point-pps, and modified point-pps sampling: efficiency and variance estimation

1992 ◽  
Vol 22 (8) ◽  
pp. 1071-1078 ◽  
Author(s):  
H.T. Schreuder ◽  
Z. Ouyang ◽  
M. Williams

Modified point-pps (probability proportional to size) sampling selects at least one sample tree per point and yields a fixed sample size. Point-Poisson sampling is as efficient as this modified procedure but less efficient than regular point-pps sampling in a simulation study estimating total volume using either the Horvitz–Thompson (ŶHT) or the weighted regression estimator (Ŷwr). Point-pps sampling is somewhat more efficient than point-Poisson sampling for all estimators except ŶHT, and point-Poisson sampling is always somewhat more efficient than modified point-pps sampling across.all estimators. For board foot volume the regression estimators are more efficient than ŶHT for all three procedures. Point-pps sampling is always most efficient, except for ŶHT, and point-Poisson sampling is always more efficient than the modified point-pps procedure. We recommend using Ŷgr (generalized regression estimator), Ŷwr, or ŶHT for total volume and Ŷgr for board foot volume. Three variance estimators estimate the variances of the regression estimates with small bias; we recommend the simple bootstrap variance estimator because it is simple to compute and does as well as its two main competitors. It does well for ŶHT, too, for all three procedures and should be used for ŶHT in point-Ppisson sampling in preference to the Grosenbaugh variance approximation. An unbiased variance estimator is given for ŶHT with the modified point-pps procedure, but the simple bootstrap variance is equally good.

2020 ◽  
Vol 189 (12) ◽  
pp. 1628-1632
Author(s):  
Mark J Giganti ◽  
Bryan E Shepherd

Abstract In observational studies using routinely collected data, a variable with a high level of missingness or misclassification may determine whether an observation is included in the analysis. In settings where inclusion criteria are assessed after imputation, the popular multiple-imputation variance estimator proposed by Rubin (“Rubin’s rules” (RR)) is biased due to incompatibility between imputation and analysis models. While alternative approaches exist, most analysts are not familiar with them. Using partially validated data from a human immunodeficiency virus cohort, we illustrate the calculation of an imputation variance estimator proposed by Robins and Wang (RW) in a scenario where the study exclusion criteria are based on a variable that must be imputed. In this motivating example, the corresponding imputation variance estimate for the log odds was 29% smaller using the RW estimator than using the RR estimator. We further compared these 2 variance estimators with a simulation study which showed that coverage probabilities of 95% confidence intervals based on the RR estimator were too high and became worse as more observations were imputed and more subjects were excluded from the analysis. The RW imputation variance estimator performed much better and should be employed when there is incompatibility between imputation and analysis models. We provide analysis code to aid future analysts in implementing this method.


2020 ◽  
Author(s):  
Thomas B. Lynch ◽  
Jeffrey H Gove ◽  
Timothy G Gregoire ◽  
Mark J Ducey

Abstract BackgroundA new variance estimator is derived and tested for big BAF (Basal Area Factor) sampling which is a forest inventory system that utilizes two BAF sizes, a small BAF for tree counts and a larger BAF on which tree measurements are made usually including \dbh s and heights needed for volume estimation.MethodsThe new estimator is derived using the \Dm\ from an existing formulation of the big BAF estimator as consisting of three sample means. The new formula is compared to existing big BAF estimators including a popular estimator based on Bruce's formula.ResultsSeveral computer simulation studies were conducted comparing the new variance estimator to all known variance estimators for big BAF currently in the forest inventory literature. In simulations the new estimator performed well and comparably to existing variance formulas.ConclusionsA possible advantage of the new estimator is that it does not require the assumption of negligible correlation between basal area counts on the small BAF factor and volume-basal area ratios based on the large BAF factor selection trees, an assumption required by all previous big BAF variance estimation formulas. Although this correlation was negligible on the simulation stands used in this study, it is conceivable that the correlation could be significant in some forest types, such as those in which the \dbh-height relationship can be affected substantially by density perhaps through competition. We also mathematically derived expressions for bias in the big BAF estimator that can be used to show the bias approaches zero in large samples on the order of 1/n where n is the number of sample points.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Thomas B. Lynch ◽  
Jeffrey H. Gove ◽  
Timothy G. Gregoire ◽  
Mark J. Ducey

Abstract Background A new variance estimator is derived and tested for big BAF (Basal Area Factor) sampling which is a forest inventory system that utilizes Bitterlich sampling (point sampling) with two BAF sizes, a small BAF for tree counts and a larger BAF on which tree measurements are made usually including DBHs and heights needed for volume estimation. Methods The new estimator is derived using the Delta method from an existing formulation of the big BAF estimator as consisting of three sample means. The new formula is compared to existing big BAF estimators including a popular estimator based on Bruce’s formula. Results Several computer simulation studies were conducted comparing the new variance estimator to all known variance estimators for big BAF currently in the forest inventory literature. In simulations the new estimator performed well and comparably to existing variance formulas. Conclusions A possible advantage of the new estimator is that it does not require the assumption of negligible correlation between basal area counts on the small BAF factor and volume-basal area ratios based on the large BAF factor selection trees, an assumption required by all previous big BAF variance estimation formulas. Although this correlation was negligible on the simulation stands used in this study, it is conceivable that the correlation could be significant in some forest types, such as those in which the DBH-height relationship can be affected substantially by density perhaps through competition. We derived a formula that can be used to estimate the covariance between estimates of mean basal area and the ratio of estimates of mean volume and mean basal area. We also mathematically derived expressions for bias in the big BAF estimator that can be used to show the bias approaches zero in large samples on the order of $\frac {1}{n}$ 1 n where n is the number of sample points.


2002 ◽  
Vol 34 (03) ◽  
pp. 484-490 ◽  
Author(s):  
Asger Hobolth ◽  
Eva B. Vedel Jensen

Recently, systematic sampling on the circle and the sphere has been studied by Gual-Arnau and Cruz-Orive (2000) from a design-based point of view. In this note, it is shown that their mathematical model for the covariogram is, in a model-based statistical setting, a special case of the p-order shape model suggested by Hobolth, Pedersen and Jensen (2000) and Hobolth, Kent and Dryden (2002) for planar objects without landmarks. Benefits of this observation include an alternative variance estimator, applicable in the original problem of systematic sampling. In a wider perspective, the paper contributes to the discussion concerning design-based versus model-based stereology.


Author(s):  
Asifa Mubeen ◽  
Nasir Jamal ◽  
Muhammad Hanif ◽  
Usman Shahzad

The main objective of the present study was to develop a new ridge regression estimator and fit the ridge regression model to the peanut production data of Pakistan. Peanut production data has been used to analyze the results. The data has been taken peanut production and growth rate of Pakistan. The mean square error of the proposed estimator is compared with some existing ridge regression estimators. In this study, we proposed a ridge regression estimator. The properties of proposed estimators are also discussed. The real data set of peanut production is used for assuming the performance of proposed and existing estimators. Numerical results of real data set show that proposed ridge regression estimator provides best results as compare to reviewed ones.


2020 ◽  
Vol 102 (2) ◽  
pp. 368-380 ◽  
Author(s):  
Michael P. Leung

We study nonparametric and regression estimators of treatment and spillover effects when interference is mediated by a network. Inference is nonstandard due to dependence induced by treatment spillovers and network-correlated effects. We derive restrictions on the network degree distribution under which the estimators are consistent and asymptotically normal and show they can be verified under a strategic model of network formation. We also construct consistent variance estimators robust to heteroskedasticity and network dependence. Our results allow for the estimation of spillover effects using data from only a single, possibly sampled, network.


Sign in / Sign up

Export Citation Format

Share Document