Susceptibility of lodgepole pine stands to the mountain pine beetle: testing of a rating system

2000 ◽  
Vol 30 (1) ◽  
pp. 44-49 ◽  
Author(s):  
T L Shore ◽  
L Safranyik ◽  
J P Lemieux

A system for rating the susceptibility of lodgepole pine (Pinus contorta Dougl. var. latifolia Engelm.) stands to the mountain pine beetle (Dendroctonus ponderosae Hopkins) was field tested in 38 stands in the Cariboo forest region of British Columbia in a retrospective study. A linear relationship was defined between the percentage of basal area killed by the mountain pine beetle and the susceptibility indices for the sample stands. The system was further tested using an independent data set of 41 stands from across southern British Columbia. Forty of the 41 stands fell within the 95% prediction interval of the original model data for stand susceptibility. This study provides validation for a susceptibility rating model described in 1992. The regression model and associated confidence interval also provide a useful tool for landscape level loss predictions due to the mountain pine beetle.

1987 ◽  
Vol 65 (1) ◽  
pp. 95-102 ◽  
Author(s):  
H. S. Whitney ◽  
R. J. Bandoni ◽  
F. Oberwinkler

A new basidiomycete, Entomocorticium dendroctoni Whitn., Band. & Oberw., gen. et sp. nov., is described and illustrated. This cryptic fungus intermingles with blue stain fungi and produces abundant essentially sessile basidiospores in the galleries and pupal chambers of the mountain pine bark beetle (Dendroctonus ponderosae Hopkins Coleoptera: Scolytidae) in lodgepole pine (Pinus contorta Dougl. var. latifolia Engelm.). The insect apparently disseminates the fungus. Experimentally, young partially insectary reared adult beetles fed E. dendroctoni produced 19% more eggs than beetles fed the blue stain fungi.


Forests ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 552 ◽  
Author(s):  
Howard Williams ◽  
Sharon Hood ◽  
Christopher Keyes ◽  
Joel Egan ◽  
José Negrón

Mountain pine beetle (Dendroctonus ponderosae Hopkins; MPB) is an aggressive bark beetle that attacks numerous Pinus spp. and causes extensive mortality in lodgepole pine (Pinus contorta Douglas ex Loudon; LPP) forests in the western United States and Canada. We used pre-outbreak LPP attributes, cumulative MPB attack severity, and areal extent of mortality data to identify subwatershed-scale forest attributes associated with severe MPB-caused tree mortality that occurred across the Northern Rockies, USA from 1999–2014. We upscaled stand-level data to the subwatershed scale to allow identification of large LPP areas vulnerable to MPB. The highest mortality occurred in subwatersheds where LPP mean basal area was greater than 11.5 m2 ha−1 and LPP quadratic mean diameter was greater than or equal to 18 cm. A coarse assessment of federally-owned LPP-dominated forestland in the analysis area indicated about 42% could potentially be silviculturally treated. Silvicultural management may be a suitable option for many LPP forests, and our hazard model can be used to identify subwatersheds with LPP attributes associated with high susceptibility to MPB across landscape spatial scales. Identifying highly susceptible subwatersheds can help prioritize general areas for potential treatments, especially where spatially extensive areas of contiguous, highly susceptible LPP occur.


2015 ◽  
Vol 45 (10) ◽  
pp. 1387-1396 ◽  
Author(s):  
René I. Alfaro ◽  
Lara van Akker ◽  
Brad Hawkes

The mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera, Curculionidae), a native insect of North America, periodically reaches population sizes that cause serious economic impact to the forest industry in western North America. The most recent outbreak in British Columbia (BC), Canada, which began in the late 1990s, is only now (2015) abating, after causing unprecedented tree mortality in lodgepole pine (Pinus contorta Douglas ex. Loudon) forests. In this paper, we make use of permanent research plots to report on the condition of lodgepole pine forests in the Chilcotin Plateau of central BC, which underwent two fully documented mountain pine beetle outbreaks. In this region, the first outbreak started in the late 1970s and lasted until the mid-1980s; the second outbreak began in the early 2000s and ended in 2010. We measured the impacts of these outbreaks in terms of tree mortality and describe the characteristics of the legacies that remain following these outbreaks, including survivors in various canopy layers and levels of existing and new regeneration. We provide evidence in support of the existence of postdisturbance legacies that classify into five distinct stand structure types. Abundant regeneration and surviving intermediate canopy layers in most stands indicate that management actions to restock pine stands in this area will not likely be necessary. The information provided by this study is important for estimating future forest development and timber supply and for forest planning and management.


2018 ◽  
Vol 48 (10) ◽  
pp. 1159-1170 ◽  
Author(s):  
Jodi N. Axelson ◽  
Brad C. Hawkes ◽  
Lara van Akker ◽  
René I. Alfaro

The mountain pine beetle (MPB; Dendroctonus ponderosae Hopkins) is a native bark beetle and a major disturbance agent in western North American forests. In the 1970s and 1980s, a MPB outbreak occurred in Waterton Lakes National Park (WLNP) in southwestern Alberta. The MPB outbreak resulted in variable levels of mortality of mature lodgepole pine (Pinus contorta var. latifolia Engelm. ex S. Watson), reducing density, volume, and basal area of overstory trees. By 2010, lodgepole pine was proportionally no longer the dominant overstory species, with increases in non-pine conifer and broadleaf species. The MPB susceptibility index decreased in most stands over time, especially in stands with the highest MPB-caused mortality. Downed woody material was characterized by fine and coarse fuel mass and volume, which both increased from 2002 to 2010, and the abundance of coarse fuels was highest in 2010, nearly 30 years after peak MPB activity. Density of understory saplings and small regeneration increased from 2002 to 2010 and was dominated by non-pine conifer and broadleaf species; lodgepole pine was nearly absent. Hierarchical clustering using 2010 MPB susceptibility and composition data characterized biological legacies remaining after the MPB outbreak. These legacies suggest multiple successional trajectories in WLNP dominated by species other than lodgepole pine. The MPB outbreak resulted in greater heterogeneity in composition and structure and suggests that stands have been resilient to this disturbance.


Forests ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 525
Author(s):  
Kristen Pelz ◽  
Frederick Smith

Aspen (Populus tremuloides) and lodgepole pine (Pinus contorta var. latifolia) co-occur in the southern Rocky Mountains (USA), where mountain pine beetle (MPB, Dendroctonus ponderosae) has caused extensive lodgepole pine mortality since the late 1990s. Both species excel in post-disturbance high-light environments, but lodgepole pine has generally been thought to establish poorly on undisturbed seedbeds, and aspen suckering may be inhibited by intact aspen overstory. We ask whether lodgepole pine and aspen will regenerate in sufficient quantities to revegetate these forests. We visited a random sample of aspen and lodgepole pine stands across the affected landscape in northern Colorado and southern Wyoming to measure regeneration and overstory mortality. Lodgepole pine regeneration is occurring in 85% of stands, and most stands have >550 stems ha−1. The median aspen sucker density was 6175 stems ha−1. Surprisingly, neither lodgepole pine nor aspen regeneration density was related to overstory mortality level. Animal damage is currently affecting aspen in these forests. Over 50% of stands had damage to 60% or more of their suckers, but 30% of stands had <20% of their stems damaged. Browsed stems were significantly shorter for their ages and were shorter than the 2.5-m height threshold for possible elk browsing. However, the results suggest that sufficient quantities of down lodgepole pine may protect aspen from damage and allow aspen to successfully recruit to the overstory. Multiple regression analysis showed that down lodgepole pine basal area, followed by browsing pressure, were the most important predictors of sucker height and the proportion of suckers browsed. Although 15% of stands had no lodgepole pine regeneration, aspen and lodgepole pine forests are generally regenerating despite animal browsing on aspen. This study is the first to present a regional perspective on regeneration in MPB-affected lodgepole pine and aspen forests, and overall, intervention does not seem necessary to ensure a mix of both species in the future.


2010 ◽  
Vol 142 (6) ◽  
pp. 557-573 ◽  
Author(s):  
Erin L. Clark ◽  
Allan L. Carroll ◽  
Dezene P.W. Huber

AbstractThe mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae), is a destructive insect pest in western Nearctic conifer forests. Currently, British Columbia, Canada, is experiencing the largest recorded outbreak of this insect, including areas that historically have had low climatic suitability for it. We analyzed 26 constitutive resin terpenes in phloem samples from British Columbia lodgepole pine (Pinus contorta) populations to test for differential resistance to mountain pine beetle attack, based upon the likelihood of previous exposure to mountain pine beetle. We assessed sampled trees for number of mountain pine beetle attacks, number of pupal chambers, and tree survival the following spring. Significant differences were found when levels of certain terpenes in lodgepole pine populations that had likely experienced substantial mountain pine beetle infestations in the past were compared with those in populations that likely had not experienced large outbreaks of mountain pine beetle. Although we expected southern pine populations to contain more total terpenes than northern populations, owing to higher historical exposure to the beetle, the converse was found. Northern populations generally had higher levels of constitutive terpenes and beetle attack than southern populations. Because several terpenes are kairomones to the mountain pine beetle and also serve as precursors for the synthesis of pheromones, the lower levels of terpenes expressed by lodgepole pines from the historical range of the mountain pine beetle may render them less chemically perceptible to foraging beetles.


1993 ◽  
Vol 125 (1) ◽  
pp. 167-169 ◽  
Author(s):  
John H. Borden

Large infestations of the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Scolytidae), reportedly arise from small, spot infestations that expand, multiply, and eventually coalesce (Safranyik et al. 1974). If these spot infestations can be located and eradicated, the development of outbreaks may be delayed, or even precluded. The principal means of eradication of such spots in forests of lodgepole pine, Pinus contorta var. latifolia Engelmann, in British Columbia is single tree disposal (B.C. Ministry of Forests 1987). This may be accomplished by treating with an arsenical herbicide within 3–4 weeks after attack, cutting, bucking, piling, and burning trees before brood emergence, or extraction and processing of brood trees before emergence.


2011 ◽  
Vol 41 (12) ◽  
pp. 2403-2412 ◽  
Author(s):  
Daniel M. Kashian ◽  
Rebecca M. Jackson ◽  
Heather D. Lyons

Extensive outbreaks of the mountain pine beetle ( Dendroctonus ponderosae Hopkins) will alter the structure of many stands that will likely be attacked again before experiencing a stand-replacing fire. We examined a stand of lodgepole pine ( Pinus contorta var. latifolia Engelm. ex S. Watson) in Grand Teton National Park currently experiencing a moderate-level outbreak and previously attacked by mountain pine beetle in the 1960s. Consistent with published studies, tree diameter was the main predictor of beetle attack on a given tree, large trees were preferentially attacked, and tree vigor, age, and cone production were unimportant variables for beetle attack at epidemic levels. Small trees killed in the stand were killed based mainly on their proximity to large trees and were likely spatially aggregated with large trees as a result of the previous outbreak. We concluded that the driving factors of beetle attack and their spatial patterns are consistent across outbreak severities but that stand structure altered by the previous outbreak had implications for the current outbreaks in the same location. This study should catalyze additional research that examines how beetle-altered stand structure affects future outbreaks — an important priority for predicting their impacts under climate change scenarios that project increases in outbreak frequency and extent.


1989 ◽  
Vol 121 (6) ◽  
pp. 521-523 ◽  
Author(s):  
A.J. Stock ◽  
R.A. Gorley

The mountain pine beetle, Dendroctonus ponderosae Hopk., causes extensive mortality of lodgepole pine, Pinus contorta var. latifolia Engelm., throughout western North America (Van Sickle 1982). The Prince Rupert Forest Region, in the northwest of British Columbia, initiated an aggressive beetle management program in 1981. Logging of infested stands, and winter felling and burning of individual infested trees are the most common direct control techniques.The “Bristol Lake” infestation developed in the Bulkley Forest District, approximately 55 km northwest of Smithers, B.C., on a steep rocky ridge within the valley of Harold Price Creek. The area contained large volumes of mature lodgepole pine, and control of the infestation was therefore considered critical to the local beetle management plan, but the size (50 ha) and rough topography of the infested area precluded normal direct control measures.


Sign in / Sign up

Export Citation Format

Share Document