scholarly journals Effects of Stand Structure, Browsing, and Biophysical Conditions on Regeneration Following Mountain Pine Beetle in Mixed Lodgepole Pine and Aspen Forests of the Southern Rockies

Forests ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 525
Author(s):  
Kristen Pelz ◽  
Frederick Smith

Aspen (Populus tremuloides) and lodgepole pine (Pinus contorta var. latifolia) co-occur in the southern Rocky Mountains (USA), where mountain pine beetle (MPB, Dendroctonus ponderosae) has caused extensive lodgepole pine mortality since the late 1990s. Both species excel in post-disturbance high-light environments, but lodgepole pine has generally been thought to establish poorly on undisturbed seedbeds, and aspen suckering may be inhibited by intact aspen overstory. We ask whether lodgepole pine and aspen will regenerate in sufficient quantities to revegetate these forests. We visited a random sample of aspen and lodgepole pine stands across the affected landscape in northern Colorado and southern Wyoming to measure regeneration and overstory mortality. Lodgepole pine regeneration is occurring in 85% of stands, and most stands have >550 stems ha−1. The median aspen sucker density was 6175 stems ha−1. Surprisingly, neither lodgepole pine nor aspen regeneration density was related to overstory mortality level. Animal damage is currently affecting aspen in these forests. Over 50% of stands had damage to 60% or more of their suckers, but 30% of stands had <20% of their stems damaged. Browsed stems were significantly shorter for their ages and were shorter than the 2.5-m height threshold for possible elk browsing. However, the results suggest that sufficient quantities of down lodgepole pine may protect aspen from damage and allow aspen to successfully recruit to the overstory. Multiple regression analysis showed that down lodgepole pine basal area, followed by browsing pressure, were the most important predictors of sucker height and the proportion of suckers browsed. Although 15% of stands had no lodgepole pine regeneration, aspen and lodgepole pine forests are generally regenerating despite animal browsing on aspen. This study is the first to present a regional perspective on regeneration in MPB-affected lodgepole pine and aspen forests, and overall, intervention does not seem necessary to ensure a mix of both species in the future.

2011 ◽  
Vol 41 (12) ◽  
pp. 2403-2412 ◽  
Author(s):  
Daniel M. Kashian ◽  
Rebecca M. Jackson ◽  
Heather D. Lyons

Extensive outbreaks of the mountain pine beetle ( Dendroctonus ponderosae Hopkins) will alter the structure of many stands that will likely be attacked again before experiencing a stand-replacing fire. We examined a stand of lodgepole pine ( Pinus contorta var. latifolia Engelm. ex S. Watson) in Grand Teton National Park currently experiencing a moderate-level outbreak and previously attacked by mountain pine beetle in the 1960s. Consistent with published studies, tree diameter was the main predictor of beetle attack on a given tree, large trees were preferentially attacked, and tree vigor, age, and cone production were unimportant variables for beetle attack at epidemic levels. Small trees killed in the stand were killed based mainly on their proximity to large trees and were likely spatially aggregated with large trees as a result of the previous outbreak. We concluded that the driving factors of beetle attack and their spatial patterns are consistent across outbreak severities but that stand structure altered by the previous outbreak had implications for the current outbreaks in the same location. This study should catalyze additional research that examines how beetle-altered stand structure affects future outbreaks — an important priority for predicting their impacts under climate change scenarios that project increases in outbreak frequency and extent.


Forests ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 552 ◽  
Author(s):  
Howard Williams ◽  
Sharon Hood ◽  
Christopher Keyes ◽  
Joel Egan ◽  
José Negrón

Mountain pine beetle (Dendroctonus ponderosae Hopkins; MPB) is an aggressive bark beetle that attacks numerous Pinus spp. and causes extensive mortality in lodgepole pine (Pinus contorta Douglas ex Loudon; LPP) forests in the western United States and Canada. We used pre-outbreak LPP attributes, cumulative MPB attack severity, and areal extent of mortality data to identify subwatershed-scale forest attributes associated with severe MPB-caused tree mortality that occurred across the Northern Rockies, USA from 1999–2014. We upscaled stand-level data to the subwatershed scale to allow identification of large LPP areas vulnerable to MPB. The highest mortality occurred in subwatersheds where LPP mean basal area was greater than 11.5 m2 ha−1 and LPP quadratic mean diameter was greater than or equal to 18 cm. A coarse assessment of federally-owned LPP-dominated forestland in the analysis area indicated about 42% could potentially be silviculturally treated. Silvicultural management may be a suitable option for many LPP forests, and our hazard model can be used to identify subwatersheds with LPP attributes associated with high susceptibility to MPB across landscape spatial scales. Identifying highly susceptible subwatersheds can help prioritize general areas for potential treatments, especially where spatially extensive areas of contiguous, highly susceptible LPP occur.


1989 ◽  
Vol 19 (9) ◽  
pp. 1096-1104 ◽  
Author(s):  
John D. Stuart ◽  
James K. Agee ◽  
Robert I. Gara

Historic regeneration patterns and regeneration requirements were investigated in an old, self-regenerating lodgepole pine (Pinusconforta Dougl. ssp. murrayana (Balf.) Critchfield) forest in south central Oregon. The forest was multiaged, with episodic regeneration pulses being correlated with mountain pine beetle (Dendroctonusponderosae Hopk.) outbreaks or fire. The magnitude of a regeneration pulse was a function of disturbance intensity. Tree ring indices show growth declines prior to mountain pine beetle outbreaks. Radial tree growth improved following disturbance. Differences in stand structure among climax lodgepole pine stands in the Rocky Mountains, Sierra Nevada, and south central Oregon were related to disturbance type, frequency, and intensity. Successful lodgepole pine reproduction was limited by soil moisture and partly by microclimate. Shading did not inhibit seedling establishment, but rather provided relief from excessive evapotranspiration, heat, and frost.


2015 ◽  
Vol 45 (10) ◽  
pp. 1387-1396 ◽  
Author(s):  
René I. Alfaro ◽  
Lara van Akker ◽  
Brad Hawkes

The mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera, Curculionidae), a native insect of North America, periodically reaches population sizes that cause serious economic impact to the forest industry in western North America. The most recent outbreak in British Columbia (BC), Canada, which began in the late 1990s, is only now (2015) abating, after causing unprecedented tree mortality in lodgepole pine (Pinus contorta Douglas ex. Loudon) forests. In this paper, we make use of permanent research plots to report on the condition of lodgepole pine forests in the Chilcotin Plateau of central BC, which underwent two fully documented mountain pine beetle outbreaks. In this region, the first outbreak started in the late 1970s and lasted until the mid-1980s; the second outbreak began in the early 2000s and ended in 2010. We measured the impacts of these outbreaks in terms of tree mortality and describe the characteristics of the legacies that remain following these outbreaks, including survivors in various canopy layers and levels of existing and new regeneration. We provide evidence in support of the existence of postdisturbance legacies that classify into five distinct stand structure types. Abundant regeneration and surviving intermediate canopy layers in most stands indicate that management actions to restock pine stands in this area will not likely be necessary. The information provided by this study is important for estimating future forest development and timber supply and for forest planning and management.


2018 ◽  
Vol 48 (10) ◽  
pp. 1159-1170 ◽  
Author(s):  
Jodi N. Axelson ◽  
Brad C. Hawkes ◽  
Lara van Akker ◽  
René I. Alfaro

The mountain pine beetle (MPB; Dendroctonus ponderosae Hopkins) is a native bark beetle and a major disturbance agent in western North American forests. In the 1970s and 1980s, a MPB outbreak occurred in Waterton Lakes National Park (WLNP) in southwestern Alberta. The MPB outbreak resulted in variable levels of mortality of mature lodgepole pine (Pinus contorta var. latifolia Engelm. ex S. Watson), reducing density, volume, and basal area of overstory trees. By 2010, lodgepole pine was proportionally no longer the dominant overstory species, with increases in non-pine conifer and broadleaf species. The MPB susceptibility index decreased in most stands over time, especially in stands with the highest MPB-caused mortality. Downed woody material was characterized by fine and coarse fuel mass and volume, which both increased from 2002 to 2010, and the abundance of coarse fuels was highest in 2010, nearly 30 years after peak MPB activity. Density of understory saplings and small regeneration increased from 2002 to 2010 and was dominated by non-pine conifer and broadleaf species; lodgepole pine was nearly absent. Hierarchical clustering using 2010 MPB susceptibility and composition data characterized biological legacies remaining after the MPB outbreak. These legacies suggest multiple successional trajectories in WLNP dominated by species other than lodgepole pine. The MPB outbreak resulted in greater heterogeneity in composition and structure and suggests that stands have been resilient to this disturbance.


2000 ◽  
Vol 30 (1) ◽  
pp. 44-49 ◽  
Author(s):  
T L Shore ◽  
L Safranyik ◽  
J P Lemieux

A system for rating the susceptibility of lodgepole pine (Pinus contorta Dougl. var. latifolia Engelm.) stands to the mountain pine beetle (Dendroctonus ponderosae Hopkins) was field tested in 38 stands in the Cariboo forest region of British Columbia in a retrospective study. A linear relationship was defined between the percentage of basal area killed by the mountain pine beetle and the susceptibility indices for the sample stands. The system was further tested using an independent data set of 41 stands from across southern British Columbia. Forty of the 41 stands fell within the 95% prediction interval of the original model data for stand susceptibility. This study provides validation for a susceptibility rating model described in 1992. The regression model and associated confidence interval also provide a useful tool for landscape level loss predictions due to the mountain pine beetle.


1989 ◽  
Vol 121 (6) ◽  
pp. 521-523 ◽  
Author(s):  
A.J. Stock ◽  
R.A. Gorley

The mountain pine beetle, Dendroctonus ponderosae Hopk., causes extensive mortality of lodgepole pine, Pinus contorta var. latifolia Engelm., throughout western North America (Van Sickle 1982). The Prince Rupert Forest Region, in the northwest of British Columbia, initiated an aggressive beetle management program in 1981. Logging of infested stands, and winter felling and burning of individual infested trees are the most common direct control techniques.The “Bristol Lake” infestation developed in the Bulkley Forest District, approximately 55 km northwest of Smithers, B.C., on a steep rocky ridge within the valley of Harold Price Creek. The area contained large volumes of mature lodgepole pine, and control of the infestation was therefore considered critical to the local beetle management plan, but the size (50 ha) and rough topography of the infested area precluded normal direct control measures.


Author(s):  
W. Romme ◽  
J. Yavitt ◽  
D. Knight

A research project was initiated in 1980 to study the effects of outbreaks of the mountain pine beetle (Dendroctonus ponderosae Hopkins) on lodgepole pine forest (Pinus contorta Dougl. ssp. latifolia) in Yellowstone National Park and surrounding areas. This native insect apparently has long been associated with lodgepole pine, and reports of small numbers of beetles can be found in Park records as early as 1925. However, in the late 1940's and early 1950's major outbreaks began to occur on the Caribou and Targhee National Forests immediately to the west and southwest of Yellowstone and Grand Teton National Parks. An outbreak in Grand Teton National Park and the adjacent Teton National Forest began in the 1950's, with an explosive increase in 1961 followed by an eventual subsidence in the late 1960's. The first major outbreak in Yellowstone National Park began in the late 1960's in the Bechler and South Entrance areas, reaching a peak there in 1970 and later declining. Yearly aerial surveys conducted thereafter showed a steady northward movement of the outbreak through the western half of the Park at a rate of 1 - 5 km per year. By 1978 the peak outbreak was centered around West Yellowstone, with hundreds of infested trees per hectare. The outbreak is now moving north and east along the Madison and Gibbon Rivers, with the greatest beetle populations currently in the vicinity of Madison Junction.


Forests ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 536 ◽  
Author(s):  
Kristen Pelz ◽  
Charles Rhoades ◽  
Robert Hubbard ◽  
Frederick Smith

The severity of lodgepole pine mortality from mountain pine beetle outbreaks varies with host tree diameter, density, and other structural characteristics, influencing subcanopy conditions and tree regeneration. We measured density and leader growth of shade-intolerant lodgepole pine, shade-tolerant Engelmann spruce, and very shade-tolerant subalpine fir regeneration beneath stands that experienced moderate and high overstory lodgepole pine mortality (average 40% and 85% of total basal area) a decade earlier. Lodgepole comprised >90% of the overstory basal area and mature spruce and fir were present in both mortality levels, though live basal area and disturbance history differed. Post-beetle outbreak recruitment was high in both mortality levels, but there were more lodgepole in high than moderate mortality plots (1140 stems ha−1 vs. 60 stems ha−1) and more subalpine fir in moderate than high mortality plots (4690 stems ha−1 vs. 2870 stems ha−1). Pine advance regeneration, established prior to outbreak, was more dense in high mortality than moderate mortality sites (930 stems ha−1 vs. 310 stems ha−1), but the trend was generally the opposite for the other conifers. Lodgepole recruitment increased and subalpine fir decreased with greater forest floor light availability. All species grew faster in high mortality areas than their counterparts in moderate mortality areas. However, in high mortality areas pine grew faster than the more shade tolerant species, and in moderate mortality areas spruce and fir grew faster than pine. These species-specific responses to the degree of overstory mortality will influence future stand composition and rate of forest recovery after mountain pine beetle outbreaks.


2009 ◽  
Vol 39 (4) ◽  
pp. 839-848 ◽  
Author(s):  
V.G. Nealis ◽  
M.K. Noseworthy ◽  
R. Turnquist ◽  
V.R. Waring

The effect of removing lodgepole pine ( Pinus contorta Dougl. ex Loud.) and retaining Douglas-fir ( Pseudotsuga menziesii (Mirb.) Franco) to reduce the risk of disturbance from mountain pine beetle ( Dendroctonus ponderosae Hopk.) in mixed conifer stands in southern British Columbia, Canada, on population processes influencing outbreaks of western spruce budworm ( Choristoneura occidentalis Free.) was evaluated in 10 paired (open vs. closed) field plots. Overall feeding damage to Douglas-fir was significantly, but only slightly, lower in open stands compared with closed stands. Although open plots tended to recruit more budworms, the losses resulting from the dispersal of spring-emerging budworms in search of feeding sites were significantly greater in open plots. The forest management benefits of these early season losses were mitigated, however, by more mortality of budworms from natural enemies, particularly diseases, in the closed plots during the budworm feeding period. These results are discussed in terms of compensating population processes and balancing objectives in forest pest management. In this case, selective harvesting of lodgepole pine as a mitigation strategy for the mountain pine beetle conserved the midterm timber supply potential represented by associated Douglas-fir even in the presence of an outbreak of the western spruce budworm.


Sign in / Sign up

Export Citation Format

Share Document