The effect of activity during early postnatal development on motor unit size

2004 ◽  
Vol 82 (8-9) ◽  
pp. 777-783 ◽  
Author(s):  
G Vrbová ◽  
M B Lowrie

At early stages of neuromuscular development, motor unit territory is expanded, with each muscle fibre being supplied by several axons. During postnatal development, some synapses are eliminated, motor unit size decreases, and the adult distribution of motor unit sizes emerges. This process depends on activity, since it proceeds more rapidly when the nerve is activated and is slower when activity is reduced. Here we studied whether, in addition to influencing the rate of retraction of motor unit territory, activity during the critical period of development affects the final outcome of the distribution of motor unit sizes. The sciatic nerve of 8- to 12-day-old rats was stimulated daily. One week later the tension of the extensor digitorum longus muscle and that of its individual motor units was recorded. The sizes of individual motor units were calculated and compared with those from animals that received no stimulation. The distribution of motor unit sizes from stimulated muscles was not significantly different from those from control muscles. Therefore, we conclude that although activity increases the rate at which motor units attain their adult size, it does not influence the final outcome of motor unit size distribution.Key words: motor unit, electrical stimulation, postnatal development, polyneuronal elimination.

1991 ◽  
Vol 66 (6) ◽  
pp. 1838-1846 ◽  
Author(s):  
R. K. Powers ◽  
M. D. Binder

1. The tension produced by the combined stimulation of two to four single motor units of the cat tibialis posterior muscle was compared with the algebraic sum of the tensions produced by each individual motor unit. Comparisons were made under isometric conditions and during imposed changes in muscle length. 2. Under isometric conditions, the tension resulting from combined stimulation of units displayed marked nonlinear summation, as previously reported in other cat hindlimb muscles. On average, the measured tension was approximately 20% greater than the algebraic sum of the individual unit tensions. However, small trapezoidal movements imposed on the muscle during stimulation significantly reduced the degree of nonlinear summation both during and after the movement. This effect was seen with imposed movements as small as 50 microns. 3. The degree of nonlinear summation was not dependent on motor unit size or on stimulus frequency. The effect was also unrelated to tendon compliance because the degree of nonlinear summation of motor unit forces was unaffected by the inclusion of different amounts of the external tendon between the muscle and the force transducer. 4. Our results support previous suggestions that the force measured when individual motor units are stimulated under isometric conditions is reduced by friction between the active muscle fibers and adjacent passive fibers. These frictional effects are likely to originate in the connective tissue matrix connecting adjacent muscle fibers. However, because these effects are virtually eliminated by small movements, linear summation of motor unit tensions should occur at low force levels under nonisometric conditions.(ABSTRACT TRUNCATED AT 250 WORDS)


1994 ◽  
Vol 76 (6) ◽  
pp. 2663-2671 ◽  
Author(s):  
L. J. Einsiedel ◽  
A. R. Luff

The aim of the study was to determine whether increased motoneuron activity induced by treadmill walking would alter the extent of motoneuron sprouting in the partially denervated rat medial gastrocnemius muscle. An extensive partial denervation was effected by unilateral section of the L5 ventral root, and it is very likely that all units remaining in the medial gastrocnemius were used in treadmill walking. Rats were trained for 1.5 h/day and after 14 days were walking at least 1 km/day. Motor unit characteristics were determined 24 days after the partial denervation and were compared with units from partially denervated control (PDC) animals and with units from normal (control) animals. In PDC rats, force developed by slow, fast fatigue-resistant, and fast intermediate-fatigable motor units increased substantially compared with control animals; that of fast-fatigable units did not increase. In partially denervated exercised animals, force developed by slow and fast-fatigue-resistant units showed no further increase, but fast-intermediate- and fast-fatigable units showed significant increases compared with those in PDC animals. The changes in force were closely paralleled by changes in innervation ratios. We concluded that neuronal activity is an important factor in determining the rate of motoneuron sprouting.


2019 ◽  
Vol 51 (Supplement) ◽  
pp. 341-342
Author(s):  
Jesus A. Hernandez-Sarabia ◽  
Alejandra Barrera-Curiel ◽  
Ryan J. Colquhoun ◽  
Jason M. DeFreitas

2020 ◽  
Vol 238 (11) ◽  
pp. 2475-2485
Author(s):  
Jesus A. Hernandez-Sarabia ◽  
Micheal J. Luera ◽  
Alejandra Barrera-Curiel ◽  
Carlos A. Estrada ◽  
Jason M. DeFreitas

2012 ◽  
Vol 107 (11) ◽  
pp. 3078-3085 ◽  
Author(s):  
Jochen Schomacher ◽  
Jakob Lund Dideriksen ◽  
Dario Farina ◽  
Deborah Falla

This study investigated the behavior of motor units in the semispinalis cervicis muscle. Intramuscular EMG recordings were obtained unilaterally at levels C2 and C5 in 15 healthy volunteers (8 men, 7 women) who performed isometric neck extensions at 5%, 10%, and 20% of the maximal force [maximum voluntary contraction (MVC)] for 2 min each and linearly increasing force contractions from 0 to 30% MVC over 3 s. Individual motor unit action potentials were identified. The discharge rate and interspike interval variability of the motor units in the two locations did not differ. However, the recruitment threshold of motor units detected at C2 ( n = 16, mean ± SD: 10.3 ± 6.0% MVC) was greater than that of motor units detected at C5 ( n = 92, 6.9 ± 4.3% MVC) ( P < 0.01). A significant level of short-term synchronization was identified in 246 of 307 motor unit pairs when computed within one spinal level but only in 28 of 110 pairs of motor units between the two levels. The common input strength, which quantifies motor unit synchronization, was greater for pairs within one level (0.47 ± 0.32) compared with pairs between levels (0.09 ± 0.07) ( P < 0.05). In a second experiment on eight healthy subjects, interference EMG was recorded from the same locations during a linearly increasing force contraction from 0 to 40% MVC and showed significantly greater EMG amplitude at C5 than at C2. In conclusion, synaptic input is distributed partly independently and nonuniformly to different fascicles of the semispinalis cervicis muscle.


“The muscle with its nerve may be thought of as an additive assemblage of motor-units, meaning by motor-unit an individual motor nerve-fibre with the bunch” [or “squad” (E. L. Porter, 1929 (1))]“ of muscle-fibres it activates.” (2) The components of such a unit can claim sufficiently close and sufficiently analysed interrelation to warrant acceptance for many purposes as a single functional entity. In application to reflexes, the unit thus resulting favours brevity and directness of quantitative statement. Its correspondence with a so-to-say quantum reaction, which forms the basis, by combinations temporal and numerical, of all grading of the muscle as effector-organ, fits it for measuring that grading. It is, moreover, applicable centrally as well as peripherally, since the motor-units active number the motoneurones discharging. Such mensuration, the total of the pool of motoneurones being known, evaluates per se the given reaction in terms of the total potential reaction. 1. Contraction-Tension of the Individual Motor-Unit. In the following experiments it was therefore sought to find the physiological size of the motor-unit, i. e. , to measure its contraction-tension. The muscles examined (cat) have been gastrocnemius (median head) soleus, semitendinosus, extensor longus digitorum , and, less fully, tibialis anticus and crureus.


1978 ◽  
Vol 41 (2) ◽  
pp. 496-508 ◽  
Author(s):  
J. V. Walsh ◽  
R. E. Burke ◽  
W. Z. Rymer ◽  
P. Tsairis

1. Compensatory hypertrophy of the medial gastrocnemius (MG) muscle was produced by denervating or removing its synergists (i.e., the lateral gastrocnemius, soleus, and plantaris muscles) in adult cats. Following survival times of 14-32 wk, intracellular recording and stimulation techniques were used to study the motor-unit population in MG. The data obtained were compared with results from MG motor units in normal unoperated cats of the same body size and weight. 2. Using criteria employed for normal motor units, the units in hypertrophic MG muscles were readily classified into the same groups (types FF, F(int), FR, and S) as in normal MG. There was no detectable difference in the distribution of motor-unit types after hypertrophy. 3. When compared with a normal motor-unit sample, there was a large increase in mean tetanic tension, but no significant change in twitch tension, for each motor-unit type in the hypertrophied muscles. The most marked increase was found among the fatigue-resistant type S and type FR motor units. There was no alteration of twitch contraction times or fatigue resistance in any unit type after hypertrophy. 4. For each motor-unit type, the mean homonymous (MG) group Ia EPSP amplitude was the same in normal and hypertrophic MG populations. There was, however, a significant increase in the average conduction velocity of MG motor axons in the animals with uncomplicated MG synergist removal and maximal MG hypertrophy. 5. On the basis of histochemical staining, muscle fibers from comparable sections of hypertrophic and contralateral (unoperated) MG muscles were presumptively identified as belonging to FF, FR, or S units. There was no significant difference between hypertrophic and contralateral MG muscles in the percentage of each fiber type, although there was some variability in muscle composition from one cat to another. One muscle pair was studied in detail for fiber cross-sectional area. In this cat, with marked hypertrophy by muscle weight, there was a modest increase in the mean fiber areas of histochemical S and FR muscle fibers, but no evident change in FF fibers, on the hypertrophic side. 6. MG motor units were examined in several cats in which synergist removal resulted in scarring and marked limitation of passive ankle mobility, and no evident weight gain in MG. Motor units of all types in these animals showed a decrease in twitch tension and in mean twitch/tetanus ratios, with little alteration in mean tetanic tensions. 7. The main effect of compensatory hypertrophy under the present conditions was a large increase in tetanic tension output from individual motor units due, at least in part, to an increase in fiber cross-sectional area. There was no evidence indicating any "conversion" of motor units or of their muscle fibers from one type to another.


2004 ◽  
Vol 82 (8-9) ◽  
pp. 645-661 ◽  
Author(s):  
Tessa Gordon ◽  
Christine K Thomas ◽  
John B Munson ◽  
Richard B Stein

Henneman's size principle relates the input and output properties of motoneurons and their muscle fibers to size and is the basis for size-ordered activation or recruitment of motor units during movement. After nerve injury and surgical repair, the relationship between motoneuron size and the number and size of the muscle fibers that the motoneuron reinnervates is initially lost but returns with time, irrespective of whether the muscles are self- or cross-reinnervated by the regenerated axons. Although the return of the size relationships was initially attributed to the recovery of the cross-sectional area of the reinnervated muscle fibers and their force per fiber, direct enumeration of the innervation ratio and the number of muscle fibers per motoneuron demonstrated that a size-dependent branching of axons accounts for the size relationships in normal muscle, as suggested by Henneman and his colleagues. This same size-dependent branching accounts for the rematching of motoneuron size and muscle unit size in reinnervated muscles. Experiments were carried out to determine whether the daily amount of neuromuscular activation of motor units accounts for the size-dependent organization and reorganization of motor unit properties. The normal size-dependent matching of motoneurons and their muscle units with respect to the numbers of muscle fibers per motoneuron was unaltered by synchronous activation of all of the motor units with the same daily activity. Hence, the restored size relationships and rematching of motoneuron and muscle unit properties after nerve injuries and muscle reinnervation sustain the normal gradation of muscle force during movement by size-ordered recruitment of motor units and the process of rate coding of action potentials. Dynamic modulation of size of muscle fibers and their contractile speed and endurance by neuromuscular activity allows for neuromuscular adaptation in the context of the sustained organization of the neuromuscular system according to the size principle.Key words: motor unit size, motor unit recruitment, innervation ratio, reinnervation.


1991 ◽  
Vol 71 (6) ◽  
pp. 2363-2368 ◽  
Author(s):  
F. P. Pettigrew ◽  
E. G. Noble

Contractile characteristics of single motor units from plantaris muscles of young (6 mo), middle-aged (14 mo), and older (20 mo) rats were examined. Some of the muscles were subjected to a short-term (30 days) compensatory overload. After overload, the absolute increase in muscle weight was less for the 20-mo-old rats (38%) than the other groups (62%). However, when muscle weight per unit body weight was examined, the ratio was increased to a similar extent for all age groups. Aging was associated with an increase in slow (6 mo, 12.5%; 14 mo, 17.7%; 20 mo, 30.2%) and transitional (6 mo, 2.5%; 14 mo, 15.2%; 20 mo, 12.7%) motor unit proportions. This increase initially occurred at the expense of fast-fatigable motor units (6 mo, 36.3%; 14 mo, 13.9%; 20 mo, 20.7%) and then fast-intermediate units (6 mo, 40%; 14 mo, 39.2%; 20 mo, 26.7%). In addition, the maximal tension of individual motor units tended to increase with age. In younger rats compensatory overload produced changes in the motor unit profile similar to those that occurred with aging. In contrast, overload of the plantaris from 20-mo-old rats resulted in an increase in the force contribution from fast motor units. These results demonstrate that aging is accompanied by a gradual reorganization of the skeletal muscle motor unit pool, such that there is a loss of fast motor units and an increase in the proportion of slow motor units. While compensatory overload initially appears to mimic the aging effect, in older animals it may delay or reverse some of the age-related changes.


Sign in / Sign up

Export Citation Format

Share Document