Flow-induced vascular remodeling in the mesenteric artery of spontaneously hypertensive rats

2008 ◽  
Vol 86 (11) ◽  
pp. 737-744 ◽  
Author(s):  
Yu-Jing Gao ◽  
Lu-Fang Yang ◽  
Shelley Stead ◽  
Robert M.K.W. Lee

The effect of an increased blood flow on vascular remodeling was studied in the mesenteric arteries of 11–12-week-old spontaneously hypertensive rats (SHR) and age-matched normotensive Wistar–Kyoto rats (WKY). Increased blood flow was induced by selective ligation of mesenteric arteries. Nearby arteries with normal blood flow were used as controls. 7–10 days after the ligation procedure, mesenteric arteries were fixed in situ at maximal relaxation by perfusion fixation. Morphometric measurement of vascular dimension was carried out with confocal microscopy. Apoptotic cells were detected by the TdT-mediated dUTP nick-end labelling method. Cell growth was quantified by using proliferating cell nuclear antigen (PCNA) in sections of paraffin-embedded vessels. In SHR, elevated blood flow increased the vessel wall dimension and the number of smooth muscle cell (SMC) layers and also increased the wall-to-lumen ratio and the number of PCNA-positive SMC, but did not change lumen size or number of apoptotic SMC. In WKY, on the other hand, increased blood flow resulted in an increase in lumen diameter, a reduction of apoptotic SMC, but no change in wall-to-lumen ratio, number of SMC layers, or number of PCNA-positive SMC. These results showed that mesenteric arteries from hypertensive and normotensive rats respond to an increase in blood flow differently: a lumen enlargement with reduced SMC apoptosis in WKY, but an increased wall-to-lumen ratio with enhanced SMC growth in SHR. Although it remains to be determined whether flow alteration is one of the initiating factors in the development of vascular remodeling in hypertension, we speculate that an increase in cardiac output, and therefore an increase in shear stress that occurs in young SHR, contributes to vascular remodelling in this model of hypertension.

1995 ◽  
Vol 78 (1) ◽  
pp. 101-111 ◽  
Author(s):  
J. M. Lash ◽  
H. G. Bohlen

These experiments determined whether a deficit in oxygen supply relative to demand could account for the sustained decrease in tissue PO2 observed during contractions of the spinotrapezius muscle in spontaneously hypertensive rats (SHR). Relative changes in blood flow were determined from measurements of vessel diameter and red blood cell velocity. Venular hemoglobin oxygen saturation measurements were performed by using in vivo spectrophotometric techniques. The relative dilation [times control (xCT)] of arteriolar vessels during contractions was as large or greater in SHR than in normotensive rats (Wistar-Kyoto), as were the increases in blood flow (2 Hz, 3.50 +/- 0.69 vs. 3.00 +/- 1.05 xCT; 4 Hz, 10.20 +/- 3.06 vs. 9.00 +/- 1.48 xCT; 8 Hz, 16.40 +/- 3.95 vs. 10.70 +/- 2.48 xCT). Venular hemoglobin oxygen saturation was lower in the resting muscle of SHR than of Wistar-Kyoto rats (31.0 +/= 3.0 vs. 43.0 +/- 1.9%) but was higher in SHR after 4- and 8-Hz contractions (4 Hz, 52.0 +/- 4.8 vs. 43.0 +/- 3.6%; 8 Hz, 51.0 +/- 4.6 vs. 41.0 +/- 3.6%). Therefore, an excess in oxygen delivery occurs relative to oxygen use during muscle contractions in SHR. The previous and current results can be reconciled by considering the possibility that oxygen exchange is limited in SHR by a decrease in anatomic or perfused capillary density, arteriovenular shunting of blood, or decreased transit time of red blood cells through exchange vessels.


1994 ◽  
Vol 77 (3) ◽  
pp. 1101-1107 ◽  
Author(s):  
S. P. Janssens ◽  
B. T. Thompson ◽  
C. R. Spence ◽  
C. A. Hales

Chronic hypoxic pulmonary hypertension involves both vasoconstriction and vascular remodeling. Spontaneously hypertensive rats (SHR) have an increased systemic vascular resistance and a greater responsiveness to constricting stimuli. We hypothesized that, in contrast to age-matched normotensive Wistar-Kyoto rats (WKY), SHR also display spontaneous pulmonary hypertension in normoxia and increased vascular response to acute and chronic hypoxia. Baseline mean pulmonary arterial pressure (PAP) and total pulmonary resistance (TPR) were higher in SHR than in WKY. With acute hypoxia (10% O2 for 15 min), PAP increased to the same extent in SHR and WKY and cardiac output (CO) was unchanged in WKY but increased in SHR. Thus, the rise in PAP in the SHR might be accounted for by the rise in CO, as TPR did not rise, but not that in the WKY, as TPR increased. After 12 days in hypoxia (10% O2), mean arterial pressure was unchanged in WKY but decreased significantly in SHR without a change in CO. PAP increased by 59% in SHR and 54% in WKY when the rats were taken from the hypoxic chamber for 1 h. Acute hypoxic challenge caused a further increase in PAP only in WKY. Medial wall thickness of alveolar duct and terminal bronchial vessels was similar in WKY and SHR after chronic hypoxia. We conclude that SHR exhibit mild baseline pulmonary hypertension in normoxia and that chronic hypoxia does not produce a disproportionate increase in SHR pulmonary vascular remodeling and pulmonary hypertension.


1996 ◽  
Vol 270 (1) ◽  
pp. H1-H6 ◽  
Author(s):  
A. S. Izzard ◽  
S. J. Bund ◽  
A. M. Heagerty

To investigate myogenic tone during the developmental and established phases of hypertension, segments of distal (6th order) mesenteric arteries from spontaneously hypertensive rats (SHR) at 5 and 20 wk were isolated and pressurized in vitro and compared with vessels from age-matched Wistar-Kyoto (WKY) control animals. At 5 wk, tone was significantly enhanced in the SHR. At 20 wk tone was no longer significantly increased over a wide pressure range, although arteries from the SHR were able to maintain diameter at all pressures studied, whereas vessels from the WKY exhibited forced distension at 180 and 200 mmHg. From the relative slope of the pressure-diameter relationship (myogenic index), no increase in peak myogenic responsiveness was observed in arteries from the SHR at either time point. Passive lumen diameters were significantly decreased in arteries from SHR at both time points. From the total and passive midwall circumference-tension relationships, total tension was observed at a reduced midwall circumference in the SHR, but increased absolute levels of total tension were not observed. The normalized midwall circumference-tension relationships in the two strains revealed increased total tension due to active tension development at a reduced normalized circumference at 5 wk in the SHR. At 20 wk the normalized midwall circumference-tension relationships in the two strains were identical. These results demonstrate that myogenic tone in mesenteric arteries is enhanced during the development of hypertension but not when it is established, except at high intraluminal pressures.


2003 ◽  
Vol 284 (4) ◽  
pp. H1212-H1216 ◽  
Author(s):  
D. I. New ◽  
A. M. S. Chesser ◽  
R. C. Thuraisingham ◽  
M. M. Yaqoob

Impaired cerebral blood flow autoregulation is seen in uremic hypertension, whereas in nonuremic hypertension autoregulation is shifted toward higher perfusion pressure. The cerebral artery constricts in response to a rise in either lumen pressure or flow; we examined these responses in isolated middle cerebral artery segments from uremic Wistar-Kyoto rats (WKYU), normotensive control rats (WKYC), and spontaneously hypertensive rats (SHR). Pressure-induced (myogenic) constriction developed at 100 mmHg; lumen flow was then increased in steps from 0 to 98 μl/min. Some vessels were studied after endothelium ablation. Myogenic constriction was significantly lower in WKYU (28 ± 2.9%) compared with both WKYC (39 ± 2.5%, P = 0.035) and SHR (40 ± 3.1%, P = 0.018). Flow caused constriction of arteries from all groups in an endothelium-independent manner. The response to flow was similar in WKYU and WKYC, whereas SHR displayed increased constriction compared with WKYU ( P < 0.001) and WKYC ( P < 0.001). We conclude that cerebral myogenic constriction is decreased in WKYU, whereas flow-induced constriction is enhanced in SHR.


1987 ◽  
Vol 252 (3) ◽  
pp. F480-F486 ◽  
Author(s):  
B. M. Iversen ◽  
I. Sekse ◽  
J. Ofstad

Renal blood flow (RBF) autoregulation was examined in untreated 10- and 40-wk-old spontaneously hypertensive rats (SHR) [mean arterial pressure (MAP) 125 +/- 4 and 167 +/- 7 mmHg] and in captopril-treated (7 days) 10- and 40-wk-old SHR (88 +/- 7 and 112 +/- 5 mmHg). Age-matched Wistar-Kyoto rats (WKY) were used as controls (MAP 91 +/- 3 and 104 +/- 2 mmHg). The study was carried out in rats with and without acute uninephrectomy. In 10-wk-old acutely uninephrectomized animals, the lower pressure limit of autoregulation was 78 +/- 4 mmHg in WKY, 102 +/- 5 mmHg in SHR (P less than 0.02), and 78 +/- 7 mmHg in captopril-treated SHR (P greater than 0.10). The renal vascular resistance (RVR) was significantly elevated at the lower pressure limit of RBF autoregulation in untreated SHR (P less than 0.02) but became normal after treatment (P greater than 0.10). Neither uninephrectomy nor variation of RBF between different batches seemed to influence the lower pressure limit of RBF autoregulation. In 40-wk-old acutely nephrectomized animals, the lower pressure limit of RBF autoregulation in WKY was 85 +/- 4 mmHg, 128 +/- 3 mmHg in SHR (P less than 0.001), and 101 +/- 5 mmHg in captopril-treated SHR (P less than 0.01). RVR at the lower pressure limit was increased in untreated SHR (P less than 0.01), but fell to normal values during captopril treatment. Neither the uninephrectomy nor variation of RBF between different batches of rats seemed to influence the lower pressure limit of RBF autoregulation.(ABSTRACT TRUNCATED AT 250 WORDS)


2009 ◽  
Vol 296 (4) ◽  
pp. H1038-H1047 ◽  
Author(s):  
Steven G. Denniss ◽  
James W. E. Rush

The fact that endothelium removal increases diameter and compliance in the common carotid artery (CCA) of spontaneously hypertensive rats (SHR) and that improving CCA endothelium-dependent vasorelaxation has been shown to normalize a reduced systolic blood flow through the SHR CCA compared with normotensive Wistar-Kyoto rats (WKY) suggests that endothelial vasomotor dysfunction may be linked to altered large artery hemodynamics in hypertension. The experiments herein were designed to further investigate WKY and SHR CCA hemodynamics and endothelium-dependent vasomotor functions. It was hypothesized that CCA blood flow and conductance would be reduced throughout the cardiac cycle in SHR and that endothelium-dependent contractile activity would impair SHR CCA vasorelaxation. We report that mean, maximal systolic, and diastolic blood flow was reduced in SHR vs. WKY CCA, as was vascular conductance. Pressure was augmented in SHR CCA and accompanied by late systolic flow augmentation so that total flow during systole was indeed no different between strains, possibly explained by earlier lower body wave reflection. While ACh stimulation in isolated precontracted WKY CCA caused a robust nitric oxide (NO)-mediated vasorelaxation, endothelium-dependent, cyclooxygenase (COX)-mediated contractile activity stimulated by high ACh concentration impaired NO- and non-NO/non-COX-mediated vasorelaxation in precontracted SHR CCA. In quiescent CCA, this endothelium-dependent contractile response was COX-1 and thromboxane-prostanoid receptor mediated and modulated by the availability of NO. These data collectively suggest that endothelium-dependent, COX-mediated endoperoxide signaling in the CCA of SHR may elicit vasoconstriction, which could shift the mechanical properties of this conduit artery and contribute to reduced CCA blood flow in vivo.


2001 ◽  
pp. 169-178 ◽  
Author(s):  
M Iwase ◽  
S Sandler ◽  
PO Carlsson ◽  
C Hellerstrom ◽  
L Jansson

The aim of the study was to investigate if hypertension affects pancreatic islet blood flow and endocrine function. For this purpose, spontaneously hypertensive rats (SHR) were compared with normotensive control Wistar-Kyoto rats (WKY). Both islet size and islet cell replication in 4-month-old SHR was increased compared with WKY. The (pro)insulin biosynthesis was reduced in islets isolated from SHR, whereas the insulin content was unchanged. A hyperinsulinemic response to glucose in vivo was observed in 4- and 12-month-old SHR. Pancreatic blood flow, measured using a microsphere technique, was lower in SHR than in WKY in rats aged 5 weeks, 4 months or 1 year. Islet blood flow was lower in 4-month-old and 1-year-old SHR. In 4-month-old animals, islet blood flow was unaffected by administration of enalaprilate and prazosin in both strains, but was markedly decreased by the administration of N(G)-methyl-L-arginine. It was concluded that the islets of SHR have a decreased insulin production in vitro and a decreased islet blood perfusion. The reasons for this are likely to be multifactorial. Because SHR maintained an essentially normal glucose tolerance, an adaptation of the beta-cells to the metabolic and hemodynamic changes imposed by hypertension occurred.


Sign in / Sign up

Export Citation Format

Share Document