Effect of sodium- or chloride-deficient medium on fast axonal transport in frog spinal nerves

1982 ◽  
Vol 60 (1) ◽  
pp. 95-97 ◽  
Author(s):  
P.-A. Lavoie

Fast axonal transport of radiolabeled proteins was studied in vitro in desheathed spinal nerves from frog. The replacement of the NaCl of the medium by LiCl reduced by 58% the amount of radiolabeled proteins which accumulated at a ligature, but its replacement by choline chloride did not inhibit transport. The replacement of NaCl by sodium isethionate led to a 32% reduction in the quantity of protein-bound radioactivity at the ligature. The results suggest that Cl ions are essential to maintain fast axonal transport, and that Na+ may also be important.

1981 ◽  
Vol 59 (1) ◽  
pp. 31-36 ◽  
Author(s):  
P.-A. Lavoie

Proteins labeled with [35S] methionine or [3H]leucine were generated in vitro in bullfrog dorsal root ganglia and their fast axonal transport in the spinal nerves was followed during a subsequent incubation period. Incubation of the ganglia in a medium where sucrose, choline chloride, or sodium isethionate replaced NaCl caused respectively an 88, a 37, or a 76% reduction in the quantity of proteins carried by the fast axonal transport system; no decrease in synthesis of labeled proteins was observed and protein transport followed the usual time course. Incubation of desheathed spinal nerves in a medium where sucrose replaced NaCl reduced by 67% the quantity of labeled proteins which were transported past the desheathed region. Although both the axons and the dorsal root ganglia exhibit the requirement for monovalent ions to maintain fast axonal transport, the possibility that the ionic requirements of the ganglia pertain to the somal portion of the nerve cell is discussed.


1983 ◽  
Vol 61 (12) ◽  
pp. 1478-1482 ◽  
Author(s):  
P.-A. Lavoie

The aim of the present study was to establish the concentrations of prilocaine, mepivacaine, and bupivacaine which are effective at blocking fast axonal transport, to determine whether prilocaine and mepivacaine offer a better prospect of dissociating conduction block and transport block in vivo than does lidocaine and whether bupivacaine offers a better prospect than etidocaine in the same context. Fast axonal transport of [3H]leucine-labeled proteins was studied in vitro in bullfrog spinal nerves and quantitated by liquid scintillation counting. Exposure of spinal nerves to 14 mM prilocaine reduced the quantity of 3H-labeled proteins which accumulated at a ligature by 86%, and exposure to 14 mM mepivacaine reduced it by 70%; 10 mM prilocaine reduced this same parameter by 54%, a degree of inhibition close to the 44% reduction caused by 14 mM lidocaine. The D(−) and L(+) stereoisomers of mepivacaine each reduced transport to the ligature by approximately 50% at a concentration of 14 mM. Bupivacaine reduced the accumulation of 3H-labeled proteins at the ligature by 49% at a 10 mM concentration (pH 6.2); its potency is close to that found for etidocaine in a previous study. Since prilocaine and mepivacaine are at least as potent as lidocaine as transport inhibitors and at blocking impulse conduction, these two anesthetics offer no advantage over lidocaine to achieve dissociation of conduction block from transport block in vivo. Bupivacaine appears to offer no advantage over etidocaine in the same context, as the two agents have a similar potency as local anesthetics and a similar potency as inhibitors of fast axonal transport.


1979 ◽  
Vol 57 (11) ◽  
pp. 1251-1255
Author(s):  
M. A. Bisby ◽  
C. E. Hilton

A previous study by McLean and co-workers reported that regenerating axons of the rabbit vagus nerve were unable to sustain axonal transport in vitro for several months after nerve injury. In contrast, we found that sensory axons of the rat sciatic nerve were able to transport 3H-labeled protein into their regenerating portions distal to the site of injury within a week after injury when placed in vitro. Transport in vitro was not significantly less than transport in axons maintained in vivo for the same period. Transport occurred in the medium that was used by the McLean group, but was significantly reduced in calcium-free medium. When axon regeneration was delared, only small amounts of activity were present in the nerve distal to the site of injury, showing that labeled protein normally present in that part of the nerve was associated with axons and was not a result of local precursor uptake by nonneural elements in the sciatic nerve. We were not able to explain the failure of McLean and co-workers to demonstrate transport in vitro in regenerating vagus nerve, but we conclude that there is no general peculiarity of growing axons that makes them unable to sustain transport in vitro.


1997 ◽  
Vol 8 (4) ◽  
pp. 675-689 ◽  
Author(s):  
D L Stenoien ◽  
S T Brady

The kinesin heterotetramer consists of two heavy and two light chains. Kinesin light chains have been proposed to act in binding motor protein to cargo, but evidence for this has been indirect. A library of monoclonal antibodies directed against conserved epitopes throughout the kinesin light chain sequence were used to map light chain functional architecture and to assess physiological functions of these domains. Immunocytochemistry with all antibodies showed a punctate pattern that was detergent soluble. A monoclonal antibody (KLC-All) made against a highly conserved epitope in the tandem repeat domain of light chains inhibited fast axonal transport in isolated axoplasm by decreasing both the number and velocity of vesicles moving, whereas an antibody against a conserved amino terminus epitope had no effect. KLC-All was equally effective at inhibiting both anterograde and retrograde transport. Neither antibody inhibited microtubule-binding or ATPase activity in vitro. KLC-All was unique among antibodies tested in releasing kinesin from purified membrane vesicles, suggesting a mechanism of action for inhibition of axonal transport. These results provide further evidence that conventional kinesin is a motor for fast axonal transport and demonstrate that kinesin light chains play an important role in kinesin interaction with membranes.


1998 ◽  
Vol 111 (21) ◽  
pp. 3221-3234 ◽  
Author(s):  
J.S. Tabb ◽  
B.J. Molyneaux ◽  
D.L. Cohen ◽  
S.A. Kuznetsov ◽  
G.M. Langford

Axoplasmic organelles in the giant axon of the squid have been shown to move on both actin filaments and microtubules and to switch between actin filaments and microtubules during fast axonal transport. The objectives of this investigation were to identify the specific classes of axoplasmic organelles that move on actin filaments and the myosin motors involved. We developed a procedure to isolate endoplasmic reticulum (ER) from extruded axoplasm and to reconstitute its movement in vitro. The isolated ER vesicles moved on exogenous actin filaments adsorbed to coverslips in an ATP-dependent manner without the addition of soluble factors. Therefore myosin was tightly bound and not extracted during isolation. These vesicles were identified as smooth ER by use of an antibody to an ER-resident protein, ERcalcistorin/protein disulfide isomerase (EcaSt/PDI). Furthermore, an antibody to squid myosin V was used in immunogold EM studies to show that myosin V localized to these vesicles. The antibody was generated to a squid brain myosin (p196) that was classified as myosin V based on comparisons of amino acid sequences of tryptic peptides of this myosin with those of other known members of the myosin V family. Dual labeling with the squid myosin V antibody and a kinesin heavy chain antibody showed that the two motors colocalized on the same vesicles. Finally, antibody inhibition experiments were performed with two myosin V-specific antibodies to show that myosin V motor activity is required for transport of vesicles on actin filaments in axoplasm. One antibody was made to a peptide in the globular tail domain and the other to the globular head fragment of myosin V. Both antibodies inhibited vesicle transport on actin filaments by greater than 90% compared to controls. These studies provide the first direct evidence that ER vesicles are transported on actin filaments by myosin V. These data confirm the role of actin filaments in fast axonal transport and provide support for the dual filament model of vesicle transport.


Sign in / Sign up

Export Citation Format

Share Document