vesicle transport
Recently Published Documents


TOTAL DOCUMENTS

324
(FIVE YEARS 59)

H-INDEX

50
(FIVE YEARS 4)

2022 ◽  
Vol 15 ◽  
Author(s):  
Danielle de Paula Moreira ◽  
Angela May Suzuki ◽  
André Luiz Teles e Silva ◽  
Elisa Varella-Branco ◽  
Maria Cecília Zorél Meneghetti ◽  
...  

Biallelic pathogenic variants in TBCK cause encephaloneuropathy, infantile hypotonia with psychomotor retardation, and characteristic facies 3 (IHPRF3). The molecular mechanisms underlying its neuronal phenotype are largely unexplored. In this study, we reported two sisters, who harbored biallelic variants in TBCK and met diagnostic criteria for IHPRF3. We provided evidence that TBCK may play an important role in the early secretory pathway in neuroprogenitor cells (iNPC) differentiated from induced pluripotent stem cells (iPSC). Lack of functional TBCK protein in iNPC is associated with impaired endoplasmic reticulum-to-Golgi vesicle transport and autophagosome biogenesis, as well as altered cell cycle progression and severe impairment in the capacity of migration. Alteration in these processes, which are crucial for neurogenesis, neuronal migration, and cytoarchitecture organization, may represent an important causative mechanism of both neurodevelopmental and neurodegenerative phenotypes observed in IHPRF3. Whether reduced mechanistic target of rapamycin (mTOR) signaling is secondary to impaired TBCK function over other secretory transport regulators still needs further investigation.


2021 ◽  
Vol 22 (24) ◽  
pp. 13412
Author(s):  
Saaya Hatakeyama ◽  
Akihiro Tojo ◽  
Hiroshi Satonaka ◽  
Nami O. Yamada ◽  
Takao Senda ◽  
...  

In minimal change nephrotic syndrome, podocyte vesicle transport is enhanced. Adenomatous polyposis coli (APC) anchors microtubules to cell membranes and plays an important role in vesicle transport. To clarify the role of APC in vesicle transport in podocytes, nephrotic syndrome was induced by puromycin amino nucleoside (PAN) injection in mice expressing APC1638T lacking the C-terminal of microtubule-binding site (APC1638T mouse); this was examined in renal tissue changes. The kidney size and glomerular area of APC1638T mice were reduced (p = 0.014); however, the number of podocytes was same between wild-type (WT) mice and APC1638T mice. The ultrastructure of podocyte foot process was normal by electron microscopy. When nephrotic syndrome was induced, the kidneys of WT+PAN mice became swollen with many hyaline casts, whereas these changes were inhibited in the kidneys of APC1638T+PAN mice. Electron microscopy showed foot process effacement in both groups; however, APC1638T+PAN mice had fewer vesicles in the basal area of podocytes than WT+PAN mice. Cytoplasmic dynein-1, a motor protein for vesicle transport, and α-tubulin were significantly reduced in APC1638T+PAN mice associated with suppressed urinary albumin excretion compared to WT+PAN mice. In conclusion, APC1638T mice showed reduced albuminuria associated with suppressed podocyte vesicle transport when minimal change nephrotic syndrome was induced.


Author(s):  
Francisco F. De-Miguel

The soma, dendrites and axon of neurons may display calcium-dependent release of transmitters and peptides. Such release is named extrasynaptic for occurring in the absence of synaptic structures. This review describes cooperative actions of three calcium sources on somatic exocytosis. Emphasis is given to the release of serotonin by the classical serotonergic leech Retzius neuron, which has allowed detailed studies of each step between excitation and exoctytosis. Trains of action potentials induce transmembrane calcium entry through L-type channels. If the frequency of action potentials is above 5 Hz, summation of calcium transients upon individual action potentials increases the intracellular calcium concentration to activate calcium–induced calcium release. The amplified calcium wave activates motochondrial ATP synthesis that fuels the transport of vesicles to the plasma membrane. Serotonin that is released activates autoreceptors coupled to phospholipase C. Production of IP3 produces release of calcium that sustains the large-scale exocytosis. The swiss-clock workings of the release machinery for somatic exocytosis has a striking disadvantage. The essential calcium-releasing endoplasmic reticulum that lays between resting vesicles and the plasma membrane becomes an obstacle for the vesicle transport. Such architecture reduces drastically the thermodynamic efficiency of the vesicle transport and elevates its energy cost..


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Fanlong Wang ◽  
Xianbi Li ◽  
Yujie Li ◽  
Jing Han ◽  
Yang Chen ◽  
...  

AbstractMany toxic secondary metabolites produced by phytopathogens can subvert host immunity, and some of them are recognized as pathogenicity factors. Fusarium head blight and Verticillium wilt are destructive plant diseases worldwide. Using toxins produced by the causal fungi Fusarium graminearum and Verticillium dahliae as screening agents, here we show that the Arabidopsis P4 ATPases AtALA1 and AtALA7 are responsible for cellular detoxification of mycotoxins. Through AtALA1-/AtALA7-mediated vesicle transport, toxins are sequestered in vacuoles for degradation. Overexpression of AtALA1 and AtALA7 significantly increases the resistance of transgenic plants to F. graminearum and V. dahliae, respectively. Notably, the concentration of deoxynivalenol, a mycotoxin harmful to the health of humans and animals, was decreased in transgenic Arabidopsis siliques and maize seeds. This vesicle-mediated cell detoxification process provides a strategy to increase plant resistance against different toxin-associated diseases and to reduce the mycotoxin contamination in food and feed.


2021 ◽  
Author(s):  
Stine K Morthorst ◽  
Camilla Nielsen ◽  
Pietro Farinelli ◽  
Zeinab Anvarian ◽  
Christina B. R. Rasmussen ◽  
...  

The kinesin-3 motor KIF13B functions in endocytosis, vesicle transport, and regulation of ciliary length and signaling. Direct binding of the membrane-associated guanylate kinase (MAGUK) DLG1 to KIF13Bs MAGUK-binding stalk (MBS) domain relieves motor autoinhibition and promotes microtubule plus end-directed cargo transport. Here we characterize Angiomotin isoform 2 (Ap80) as a novel KIF13B interactor that promotes binding of another MAGUK, the polarity protein and Crumbs complex component PALS1, to KIF13B. Live cell imaging analysis indicated that Ap80 is concentrated at the base of primary cilia and recruits PALS1 to this site, but is not itself a cargo of KIF13B. Consistent with a ciliary function for Ap80, its depletion led to elongated primary cilia and altered IGF-1 signaling in cultured mammalian cells. Our results suggest that Ap80 may specifically activate KIF13B cargo binding at the base of primary cilia to regulate ciliary length and signaling.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12175
Author(s):  
Suresh Kandasamy ◽  
Kiley Couto ◽  
Justin Thackeray

The Drosophila extracellular matrix protein Dumpy (Dpy) is one of the largest proteins encoded by any animal. One class of dpy mutations produces a characteristic shortening of the wing blade known as oblique (dpyo), due to altered tension in the developing wing. We describe here the characterization of docked (doc), a gene originally named because of an allele producing a truncated wing. We show that doc corresponds to the gene model CG5484, which encodes a homolog of the yeast protein Yif1 and plays a key role in ER to Golgi vesicle transport. Genetic analysis is consistent with a similar role for Doc in vesicle trafficking: docked alleles interact not only with genes encoding the COPII core proteins sec23 and sec13, but also with the SNARE proteins synaptobrevin and syntaxin. Further, we demonstrate that the strong similarity between the doc1 and dpyo wing phenotypes reflects a functional connection between the two genes; we found that various dpy alleles are sensitive to changes in dosage of genes encoding other vesicle transport components such as sec13 and sar1. Doc’s effects on trafficking are not limited to Dpy; for example, reduced doc dosage disturbed Notch pathway signaling during wing blade and vein development. These results suggest a model in which the oblique wing phenotype in doc1 results from reduced transport of wild-type Dumpy protein; by extension, an additional implication is that the dpyo alleles can themselves be explained as hypomorphs.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Bao-hua Dong ◽  
Zhao-qing Niu ◽  
Jing-tao Zhang ◽  
Yi-jing Zhou ◽  
Fan-mei Meng ◽  
...  

Parkinson’s disease (PD) is a disease that involves brain damage and is associated with neuroinflammation, mitochondrial damage, and cell aging. However, the pathogenic mechanism of PD is still unknown. Sequencing data and proteomic data can describe the fluctuation of molecular abundance in diseases at the mRNA level and protein level, respectively. In order to explore new targets in the pathogenesis of PD, the study analyzed molecular changes from the database by combining transcriptomic and proteomic analysis. Differentially expressed genes and differentially abundant proteins were summarized and analyzed. Enrichment and cluster analysis emphasized the importance of neurotransmitter release, mitochondrial damage, and vesicle transport. The molecular network revealed a subnetwork of 9 molecules related to SCNA and TH and revealed hub gene with differential expression at both mRNA and protein levels. It found that ACHE and CADPS could be used as new targets in PD, emphasizing that impaired nerve signal transmission and vesicle transport affect the pathogenesis of PD. Our research emphasized that the joint analysis and verification of transcriptomics and proteomics were devoted to understanding the comprehensive views and mechanism of pathogenesis in PD.


2021 ◽  
Author(s):  
Risa Matsuoka ◽  
Masateru Miki ◽  
Sonoko Mizuno ◽  
Yurina Ito ◽  
Chihiro Yamada ◽  
...  

The Golgi complex plays an active role in organizing asymmetric microtubule arrays essential for polarized vesicle transport. The coiled-coil protein MTCL1 stabilizes microtubules nucleated from the Golgi membrane. Here, we report an MTCL1 paralog, MTCL2, which preferentially acts on the perinuclear microtubules accumulated around the Golgi. MTCL2 associates with the Golgi membrane through the N-terminal coiled-coil region and directly binds microtubules through the conserved C-terminal domain without promoting microtubule stabilization. Knockdown of MTCL2 significantly impaired microtubule accumulation around the Golgi as well as the compactness of the Golgi ribbon assembly structure. Given that MTCL2 forms parallel oligomers through homo-interaction of the central coiled-coil motifs, our results indicate that MTCL2 promotes asymmetric microtubule organization by crosslinking microtubules on the Golgi membrane. Results of in vitro wound healing assays further suggest that this function of MTCL2 enables integration of the centrosomal and Golgi-associated microtubules on the Golgi membrane, supporting directional migration. Additionally, the results demonstrated the involvement of CLASPs and giantin in mediating the Golgi association of MTCL2.


2021 ◽  
pp. 101254
Author(s):  
Nao Yoshida ◽  
Ippo Ogura ◽  
Makoto Nagano ◽  
Tadashi Ando ◽  
Junko Y. Toshima ◽  
...  

mBio ◽  
2021 ◽  
Author(s):  
Shinuo Cao ◽  
Juan Yang ◽  
Jiawen Fu ◽  
Heming Chen ◽  
Honglin Jia

SNAREs are essential for the fusion of the transport vesicles and target membranes and, thus, provide perfect targets for obtaining a global view of the vesicle transport system. In this study, we report that a novel Qc-SNARE (TgStx19) instead of Use1p is located at the ER and acts as a partner of TgStx18 in T. gondii .


Sign in / Sign up

Export Citation Format

Share Document