Importance of monovalent ions for the fast axonal transport of proteins

1981 ◽  
Vol 59 (1) ◽  
pp. 31-36 ◽  
Author(s):  
P.-A. Lavoie

Proteins labeled with [35S] methionine or [3H]leucine were generated in vitro in bullfrog dorsal root ganglia and their fast axonal transport in the spinal nerves was followed during a subsequent incubation period. Incubation of the ganglia in a medium where sucrose, choline chloride, or sodium isethionate replaced NaCl caused respectively an 88, a 37, or a 76% reduction in the quantity of proteins carried by the fast axonal transport system; no decrease in synthesis of labeled proteins was observed and protein transport followed the usual time course. Incubation of desheathed spinal nerves in a medium where sucrose replaced NaCl reduced by 67% the quantity of labeled proteins which were transported past the desheathed region. Although both the axons and the dorsal root ganglia exhibit the requirement for monovalent ions to maintain fast axonal transport, the possibility that the ionic requirements of the ganglia pertain to the somal portion of the nerve cell is discussed.

1982 ◽  
Vol 60 (1) ◽  
pp. 95-97 ◽  
Author(s):  
P.-A. Lavoie

Fast axonal transport of radiolabeled proteins was studied in vitro in desheathed spinal nerves from frog. The replacement of the NaCl of the medium by LiCl reduced by 58% the amount of radiolabeled proteins which accumulated at a ligature, but its replacement by choline chloride did not inhibit transport. The replacement of NaCl by sodium isethionate led to a 32% reduction in the quantity of protein-bound radioactivity at the ligature. The results suggest that Cl ions are essential to maintain fast axonal transport, and that Na+ may also be important.


1983 ◽  
Vol 61 (12) ◽  
pp. 1478-1482 ◽  
Author(s):  
P.-A. Lavoie

The aim of the present study was to establish the concentrations of prilocaine, mepivacaine, and bupivacaine which are effective at blocking fast axonal transport, to determine whether prilocaine and mepivacaine offer a better prospect of dissociating conduction block and transport block in vivo than does lidocaine and whether bupivacaine offers a better prospect than etidocaine in the same context. Fast axonal transport of [3H]leucine-labeled proteins was studied in vitro in bullfrog spinal nerves and quantitated by liquid scintillation counting. Exposure of spinal nerves to 14 mM prilocaine reduced the quantity of 3H-labeled proteins which accumulated at a ligature by 86%, and exposure to 14 mM mepivacaine reduced it by 70%; 10 mM prilocaine reduced this same parameter by 54%, a degree of inhibition close to the 44% reduction caused by 14 mM lidocaine. The D(−) and L(+) stereoisomers of mepivacaine each reduced transport to the ligature by approximately 50% at a concentration of 14 mM. Bupivacaine reduced the accumulation of 3H-labeled proteins at the ligature by 49% at a 10 mM concentration (pH 6.2); its potency is close to that found for etidocaine in a previous study. Since prilocaine and mepivacaine are at least as potent as lidocaine as transport inhibitors and at blocking impulse conduction, these two anesthetics offer no advantage over lidocaine to achieve dissociation of conduction block from transport block in vivo. Bupivacaine appears to offer no advantage over etidocaine in the same context, as the two agents have a similar potency as local anesthetics and a similar potency as inhibitors of fast axonal transport.


1997 ◽  
Vol 25 (3) ◽  
pp. 303-309
Author(s):  
Václav Mandys ◽  
Katerina Jirsová ◽  
Jirí Vrana

The neurotoxic effects of seven selected Multicenter Evaluation of In Vitro Cytotoxicity programme chemicals (methanol, ethanol, isopropanol, sodium chloride, potassium chloride, iron [II] sulphate and chloroform) were evaluated in organotypic cultures of chick embryonic dorsal root ganglia (DRG), maintained in a soft agar culture medium. Two growth parameters of neurite outgrowth from the ganglia — the mean radial length of neurites and the area of neurite outgrowth — were used to evaluate the toxicities of the chemicals. Dose-dependent decreases of both parameters were observed in all experiments. IC50 values (the concentration causing 50% inhibition of growth) were calculated from the dose-response curves established at three time-points during culture, i.e. 24, 48 and 72 hours. The lowest toxic effect was observed in cultures exposed to methanol (the IC50 ranging from 580mM to 1020mM). The highest toxic effect was observed in cultures exposed to iron (II) sulphate (the IC50 ranging from 1.2mM to 1.7mM). The results of other recent experiments suggest that organotypic cultures of DRG can be used during in vitro studies on target organ toxicity within the peripheral nervous system. Moreover, these cultures preserve the internal organisation of the tissue, maintain intercellular contacts, and thus reflect the in vitro situation, more precisely than other cell cultures.


1979 ◽  
Vol 57 (11) ◽  
pp. 1251-1255
Author(s):  
M. A. Bisby ◽  
C. E. Hilton

A previous study by McLean and co-workers reported that regenerating axons of the rabbit vagus nerve were unable to sustain axonal transport in vitro for several months after nerve injury. In contrast, we found that sensory axons of the rat sciatic nerve were able to transport 3H-labeled protein into their regenerating portions distal to the site of injury within a week after injury when placed in vitro. Transport in vitro was not significantly less than transport in axons maintained in vivo for the same period. Transport occurred in the medium that was used by the McLean group, but was significantly reduced in calcium-free medium. When axon regeneration was delared, only small amounts of activity were present in the nerve distal to the site of injury, showing that labeled protein normally present in that part of the nerve was associated with axons and was not a result of local precursor uptake by nonneural elements in the sciatic nerve. We were not able to explain the failure of McLean and co-workers to demonstrate transport in vitro in regenerating vagus nerve, but we conclude that there is no general peculiarity of growing axons that makes them unable to sustain transport in vitro.


1994 ◽  
Vol 88 (5) ◽  
pp. 459-464 ◽  
Author(s):  
W. Br�ck ◽  
Y. Br�ck ◽  
U. Diederich ◽  
R. L. Friede

Development ◽  
1991 ◽  
Vol 112 (1) ◽  
pp. 69-82 ◽  
Author(s):  
S. Boisseau ◽  
J. Nedelec ◽  
V. Poirier ◽  
G. Rougon ◽  
M. Simonneau

Using a monoclonal antibody that recognizes specifically a high polysialylated form of N-CAM (high PSA N-CAM), the temporal and spatial expression of this molecule was studied in developing spinal cord and neural crest derivatives of mouse truncal region. Temporal expression was analyzed on immunoblots of spinal cord and dorsal root ganglia (DRGs) extracts microdissected at different developmental stages. Analysis of the ratio of high PSA N-CAM to total N-CAM indicated that sialylation and desialylation are independently regulated from the expression of polypeptide chains of N-CAM. Motoneurons, dorsal root ganglia cells and commissural neurons present a homogeneous distribution of high PSA N-CAMs on both their cell bodies and their neurites. Sialylation of N-CAM can occur in neurons after their aggregation in peripheral ganglia as demonstrated for dorsal root ganglia at E12. Furthermore, peripheral ganglia express different levels of high PSA N-CAM. With in vitro models using mouse neural crest cells, we found that expression of high PSA N-CAM was restricted to cells presenting an early neuronal phenotype, suggesting a common regulation for the expression of high PSA N-CAM molecules, neurofilament proteins and sodium channels. Using perturbation experiments with endoneuraminidase, we confirmed that high PSA N-CAM molecules are involved in fasciculation and neuritic growth when neurons derived from neural crest grow on collagen substrata. However, we demonstrated that these two parameters do not appear to depend on high PSA N-CAM molecules when cells were grown on a fibronectin substratum, indicating the existence of a hierarchy among adhesion molecules.


1989 ◽  
Vol 62 (3) ◽  
pp. 657-664 ◽  
Author(s):  
K. Morita ◽  
Y. Katayama

1. Intracellular recordings were made from bullfrog dorsal root ganglion (DRG) neurons in vitro. They were divided into three types, As, Ar, and C, according to their conduction velocity and their sensitivity to tetrodotoxin [TTX (less than or equal to 1 microM)]; an As neuron had a fast conduction velocity (13-50 m/s, mean = 31 m/s, n = 73) and TTX-sensitive sodium soma spikes: an Ar neuron showed a fast conduction velocity (4-28 m/s, mean = 14 m/s, n = 52) and TTX-resistant sodium soma spikes; and a C neuron had a slow conduction velocity (0.16-0.8 m/s, mean = 0.4 m/s, n = 49) and TTX-resistant sodium-calcium soma spikes. 2. Superfusion of acetylcholine [ACh (0.3 microM-1 mM)] produced a fast depolarization in 70% of Ar and in 50% of C neurons. No As neuron showed a fast depolarization in response to ACh. The ACh-induced fast response persisted in calcium-free or TTX-containing solutions. 3. The response in both Ar and C neurons was similar except in time course; the response was always more rapid in C than in Ar neurons. The response was always associated with a decreased membrane resistance and reversed in polarity at about -30 mV. The reversal potential varied with both sodium and potassium concentrations of the superfusing solutions. 4. Nicotine, (+)-tubocurarine [(+)-TC], and hexamethonium reversibly blocked the ACh fast response.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document