Intracellular pH recovery from lactic acidosis of single skeletal muscle fibres

1988 ◽  
Vol 66 (12) ◽  
pp. 1560-1564 ◽  
Author(s):  
Y. E. Allard

Intracellular pH (pHi, measured with H+-selective microelectrodes, in quiescent frog sartorius muscle fibres was 7.29 ± 0.09 (n = 13). Frog muscle fibres were superfused with a modified Ringer solution containing 30 mM HEPES buffer, at extracellular pH (pHo) 7.35. Intracellular pH decreased to 6.45 ± 0.14 (n = 13) following replacement of 30 mM NaCl with sodium lactate (30 mM MES, pHo 6.20). Intracellular pH recovery, upon removal of external lactic acid, depended on the buffer concentration of the modified Ringer solution. The measured values of the pHi recovery rates was 0.06 ± 0.01 ΔpHi/min (n = 5) in 3 mM HEPES and was 0.18 ± 0.06 ΔpHi/min (n = 13) in 30 mM HEPES, pHo 7.35. The Na+–H+ exchange inhibitor amiloride (2 mM) slightly reduced pHi recovery rate. The results indicate that the net proton efflux from lactic acidotic frog skeletal muscle is mainly by lactic acid efflux and is limited by the transmembrane pH gradient which, in turn, depends on the extracellular buffer capacity in the diffusion limited space around the muscle fibres.

2001 ◽  
Vol 531 (3) ◽  
pp. 743-756 ◽  
Author(s):  
Petra Wetzel ◽  
Anke Hasse ◽  
Simon Papadopoulos ◽  
Juha Voipio ◽  
Kai Kaila ◽  
...  

1987 ◽  
Vol 65 (12) ◽  
pp. 2488-2491 ◽  
Author(s):  
M. J. Mason

The present results demonstrate the sensitivity of the Corning chloride liquid ion exchanger 477913 to L-lactate. Microelectrodes filled with this exchanger showed responses to changes in L-lactate concentration in chloride-free solutions. In these experiments L-lactate replaced gluconate in equimolar amounts. Microelectrodes filled with this exchanger were used to qualitatively detect changes in intracellular anion in chloride-depleted frog sartorius muscle fibres during exposure to extracellular concentrations of L-lactate. The increase in intracellular anion concentration is consistent with the movement of L-lactate into the cell. This microelectrode enables one to qualitatively monitor changes in intracellular L-lactate in chloride-free experiments without incorporating selectivity coefficients.


1982 ◽  
Vol 60 (1) ◽  
pp. 47-51 ◽  
Author(s):  
George B. Frank ◽  
Farrokh Rohani

The effects of Ba2+ ions on twitches. K+-induced contractures, and on intracellularly recorded membrane potentials (Em) and depolarizations of frog skeletal muscle fibres were investigated. Exposure of toe muscles to choline–Ringer's solution with 10−3 M Ba2+ with Ca2+ (1.08 mM) eliminated or very greatly reduced contractures produced by 60 mM K+. In contrast, not only did the same concentration of Ba2+ ions fail to depress the twitch tension of isolated semitendinosus fibres when added to Ringer's with Ca2+, but it even restored twitches that had been eliminated in a zero Ca2+ Ringer's solution. The resting Em of sartorius muscle fibres in choline–Ringer's solution was reduced about 20 mV by 10−3 M Ba2+. This Ba2+ ion concentration also antagonized the K+-induced depolarization. Thus in the presence of 1 mM Ba2+, 20 mM K+ hyperpolarized rather than depolarized the fibres and 60 or 123 mM K+ produced only very slowly developing, small depolarizations. These results suggest that the loss of the K+-induced contracture in choline–Ringer's caused by Ba2+ ions is due to an inhibition of the K+-induced depolarization. The latter result is consistent with previous findings of other workers that Ba2+ ions block membrane K+ channels.not available


1989 ◽  
Vol 504 (2) ◽  
pp. 306-310 ◽  
Author(s):  
Inger Nennesmo ◽  
Tomas Olsson ◽  
Åke Ljungdahl ◽  
Krister Kristensson ◽  
Peter H. Van der Meide

Sign in / Sign up

Export Citation Format

Share Document