Relationship between oxidative phosphorylation and adenine nucleotide translocase activity of two populations of cardiac mitochondria and mechanical recovery of ischemic hearts following reperfusion

1989 ◽  
Vol 67 (7) ◽  
pp. 704-709 ◽  
Author(s):  
Jianmin Duan ◽  
Morris Karmazyn

The possible relationship of the atractyloside-sensitive adenine nucleotide translocase activity, oxidative phosphorylation, and the recovery of ventricular contractility following reperfusion of the ischemic isolated rat heart was studied. Five minutes of total global ischemia without reperfusion produced a significant depression in adenine nucleotide translocase in subsarcolemmal mitochondria (SLM), whereas a minimum of 10 min ischemia was required to observe a significant depression in interfibrillar mitochondria (IFM). Increasing durations of ischemia resulted in a progressively larger depression in translocase activity, with a maximum depression of approximately 75% seen in both populations following 20 min ischemia. In contrast, oxidative phosphorylation was totally unaffected in either mitochondrial population following up to 20 min of ischemia. We assessed whether translocase activity or oxidative phosphorylation were related to contractile recovery in hearts reperfused following various durations of ischemia. In SLM, translocase activity was further depressed following reperfusion compared with pre-reperfusion ischemic values, whereas with IFM only reperfusion following 5 min ischemia produced a further depression in translocase values. Oxidative phosphorylation rates of SLM and IFM were significantly depressed following reperfusion of ischemic hearts, although SLM exhibited a generally higher sensitivity in this regard. In reperfused hearts, an overall significant relationship was found between oxidative phosphorylation rate and adenine translocase activity as well as between translocase activity and post-reperfusion contractile recovery. These data show that ischemia can produce a significant depression in translocase activity in the absence of any change in oxidative phosphorylation. The results also suggest that the depression in mitochondrial ADP/ATP translocase and subsequent inhibition of oxidative phosphorylation in the reperfused heart may represent one of the important contributory mechanisms involved in cardiac failure and injury during acute ischemia and reperfusion.Key words: myocardial ischemia, myocardial reperfusion, mitochondria, oxidative phosphorylation, adenine nucleotide translocase.

1997 ◽  
Vol 273 (3) ◽  
pp. H1544-H1554 ◽  
Author(s):  
E. J. Lesnefsky ◽  
B. Tandler ◽  
J. Ye ◽  
T. J. Slabe ◽  
J. Turkaly ◽  
...  

The effect of myocardial ischemia on mitochondrial oxidative phosphorylation was investigated using isolated, buffer-perfused rabbit hearts. After 45 min of global ischemia, oxidative phosphorylation was decreased only in the subsarcolemmal population of mitochondria with all substrates tested. The oxidation of N,N,N',N' tetramethyl p-phenylenediamine-ascorbate, an electron donor to cytochrome oxidase via cytochrome c, was decreased in subsarcolemmal mitochondria [ischemia (n = 6): 76 +/- 3 vs. control (n = 5): 105 +/- 6 nanoatoms O.min-1.mg-1, P < 0.01] but not in interfibrillar mitochondria. Only minor morphological changes were observed by electron microscopy in the isolated mitochondria after ischemia. Neither cytochrome oxidase activity measured under conditions for maximal activity nor the apparent Michaelis constant and maximum velocity values of the two cytochrome c binding sites were different in subsarcolemmal mitochondria isolated from ischemic and control hearts. The cytochrome c content was decreased in subsarcolemmal mitochondria after ischemia (ischemia: 0.111 +/- 0.013 vs. control: 0.156 +/- 0.007 nmol/mg protein, P < 0.05). Thus ischemia decreased the rate of oxidative phosphorylation through cytochrome oxidase selectively in intact subsarcolemmal mitochondria. Ischemic damage to the terminal segment of the electron transport chain involves a decrease in the content of cytochrome c, whereas the expressible catalytic activity of cytochrome oxidase remains unchanged.


FEBS Letters ◽  
2000 ◽  
Vol 477 (1-2) ◽  
pp. 141-144 ◽  
Author(s):  
Damien Roussel ◽  
François Chainier ◽  
Jean-Louis Rouanet ◽  
Hervé Barré

2001 ◽  
Vol 280 (6) ◽  
pp. H2770-H2778 ◽  
Author(s):  
Edward J. Lesnefsky ◽  
Thomas J. Slabe ◽  
Maria S. K. Stoll ◽  
Paul E. Minkler ◽  
Charles L. Hoppel

Mitochondria contribute to myocyte injury during ischemia. After 30 and 45 min of ischemia in the isolated perfused rabbit heart, subsarcolemmal mitochondria (SSM), located beneath the plasma membrane, sustain a decrease in oxidative phosphorylation through cytochrome oxidase. In contrast, oxidation through cytochrome oxidase in interfibrillar mitochondria (IFM), located between the myofibrils, remains unaffected. Cytochrome oxidase activity in the intact membrane requires an inner mitochondrial membrane lipid environment enriched in cardiolipin. During ischemia, the content of cardiolipin decreased only in SSM, whereas the content of other phospholipids was preserved. Ischemia did not alter the composition of the cardiolipin that remained in SSM. Cardiolipin content was preserved in IFM during ischemia. Thus cardiolipin is a relatively early target of ischemic mitochondrial damage, leading to loss of oxidative phosphorylation through cytochrome oxidase in SSM.


Sign in / Sign up

Export Citation Format

Share Document