Effects of nifedipine and captopril on vascular capacitance of ganglion-blocked anesthetized dogs

1990 ◽  
Vol 68 (3) ◽  
pp. 431-438 ◽  
Author(s):  
Richard I. Ogilvie ◽  
Danuta Zborowska-Sluis

The hemodynamic effects of nifedipine and captopril at doses producing similar reductions in arterial pressure were studied in pentobarbital- anesthetized ventilated dogs after splenectomy during ganglion blockade with hexamethonium. Mean circulatory filling pressure (Pmcf) was determined during transient circulatory arrest induced by acetylcholine at baseline circulating blood volumes and after increases of 5 and 10 mL/kg. Central blood volumes (pulmonary artery to aortic root) were determined from transit times, and separately determined cardiac outputs (right atrium to pulmonary artery) were estimated by thermodilution. Nifedipine (n = 5) increased Pmcf at all circulating blood volumes and reduced total vascular capacitance without a change in total vascular compliance. Central blood volume, right atrial pressure, and cardiac output were increased with induced increases in circulating blood volume. In contrast, captopril (n = 5) did not alter total vascular capacitance, central blood volume, right atrial pressure, or cardiac output at baseline or with increased circulating volume. Thus, at doses producing similar reductions in arterial pressure, nifedipine but not captopril increased venous return and cardiac output in ganglion-blocked dogs.Key words: mean circulatory filling pressure, vascular compliance, vascular capacitance, nifedipine, captopril.

1992 ◽  
Vol 70 (5) ◽  
pp. 669-674 ◽  
Author(s):  
S. C. Cha ◽  
G. W. Aberdeen ◽  
B. S. Nuwayhid ◽  
E. W. Quillen Jr.

To assess the degree of circulatory fullness and to evaluate the influence of peripheral and cardiac factors in the regulation of cardiac output during pregnancy, the following studies were conducted using pentobarbital-anesthetized, open-chest nonpregnant and late term pregnant guinea pigs. Mean circulatory filling pressure was taken as the equilibrium pressure when the pulmonary artery was constricted. Total vascular compliance was assessed by ±5-mL changes in blood volume performed while this constriction was maintained. A separate group of guinea pigs was prepared with a pulmonary artery electromagnetic flow probe and right atrial catheter. Rapid infusion of saline was used to increase right atrial pressure while the cardiac output was determined. Pregnancy was characterized by the following changes relative to nonpregnant controls: 51Cr-labelled RBC blood volume increased from 55 ± 3 to 67 ± 3 mL/kg; mean circulatory filling pressure increased from 7.1 ± 0.2 to 8.0 ± 0.5 mmHg (1 mmHg = 133.322 Pa); right atrial pressure decreased from 3.4 ± 0.2 to 2.1 ± 0.3 mmHg; and cardiac output increased from 71.8 ± 3.9 to 96.8 ± 3.3 mL∙min−1∙kg−1. Total vascular compliance was not changed (2.1 ± 0.1 mL∙kg−1∙mmHg−1) and most of the expanded blood volume was accommodated as unstressed volume. The cardiac function curve was shifted upwards in pregnant animals. The resistance to venous return, as determined from the slope of the venous return curves, was not changed. These data suggest that the circulation of the pregnant guinea pig is slightly overfilled. The pressure gradient for venous return was increased, but a more important contribution to the increased levels of cardiac output is made by the increase in cardiac pumping ability.Key words: blood volume, mean circulatory filling pressure, vascular compliance, venous return.


1990 ◽  
Vol 68 (3) ◽  
pp. 384-391 ◽  
Author(s):  
Carl F. Rothe ◽  
A. Dean Flanagan ◽  
Roberto Maass-Moreno

We tested the hypothesis that the changes in venous tone induced by changes in arterial blood oxygen or carbon dioxide require intact cardiovascular reflexes. Mongrel dogs were anesthetized with sodium pentobarbital and paralyzed with veruronium bromide. Cardiac output and central blood volume were measured by indocyanine green dilution. Mean circulatory filling pressure, an index of venous tone at constant blood volume, was estimated from the central venous pressure during transient electrical fibrillation of the heart. With intact reflexes, hypoxia (arterial Pao2 = 38 mmHg), hypercapnia (Paco2 = 72 mmHg), or hypoxic hypercapnia (Pao2 = 41; Paco2 = 69 mmHg) (1 mmHg = 133.32 Pa) significantly increased the mean circulatory filling pressure and cardiac output. Hypoxia, but not normoxic hypercapnia, increased the mean systemic arterial pressure and maintained the control level of total peripheral resistance. With reflexes blocked with hexamethonium and atropine, systemic arterial pressure supported with a constant infusion of norepinephrine, and the mean circulatory filling pressure restored toward control with 5 mL/kg blood, each experimental gas mixture caused a decrease in total peripheral resistance and arterial pressure, while the mean circulatory filling pressure and cardiac output were unchanged or increased slightly. We conclude that hypoxia, hypercapnia, and hypoxic hypercapnia have little direct influence on vascular capacitance, but with reflexes intact, there is a significant reflex increase in mean circulatory filling pressure.Key words: cardiovascular reflex, vascular capacitance, hypoxia, hypercapnia, mean circulatory filling pressure, venoconstriction.


1990 ◽  
Vol 68 (5) ◽  
pp. 575-585 ◽  
Author(s):  
Carl F. Rothe ◽  
A. Dean Flanagan ◽  
Roberto Maass-Moreno

The role of β-adrenergic agonists, such as isoproterenol, on vascular capacitance is unclear. Some investigators have suggested that isoproterenol causes a net transfer of blood to the chest from the splanchnic bed. We tested this hypothesis in dogs by measuring liver thickness, cardiac output, cardiopulmonary blood volume, mean circulatory filling pressure, portal venous, central venous, pulmonary arterial, and systemic arterial pressures while infusing norepinephrine (2.6 μg∙min−1∙kg−1), or isoproterenol (2.0 μg∙min−1∙kg−1), or histamine (4 μg∙min−1∙kg−1), or a combination of histamine and isoproterenol. Norepinephrine (an α- and β1-adrenergic agonist) decreased hepatic thickness and increased mean circulatory filling pressure, cardiac output, cardiopulmonary blood volume, total peripheral resistance, and systemic arterial and portal pressures. Isoproterenol increased cardiac output and decreased total peripheral resistance, but it had little effect on liver thickness or mean circulatory filling pressure and did not increase the cardiopulmonary blood volume or central venous pressure. Histamine caused a marked increase in portal pressure and liver thickness and decreased cardiac output, but it had little effect on the estimated mean circulatory filling pressure. Isoproterenol during histamine infusions reduced histamine-induced portal hypertension, reduced liver size, and increased cardiac output. We conclude that the β-adrenergic agonist, isoproterenol, has little influence on vascular capacitance or liver volume of dogs, unless the hepatic outflow resistance is elevated by agents such as histamine.Key words: β-adrenergic agonists, vascular capacitance, mean circulatory filling pressure, isoproterenol, histamine, liver sphincters.


1993 ◽  
Vol 74 (2) ◽  
pp. 499-509 ◽  
Author(s):  
C. F. Rothe

The volume-pressure relationship of the vasculature of the body as a whole, its vascular capacitance, requires a measurement of the mean circulatory filling pressure (Pmcf). A change in vascular capacitance induced by reflexes, hormones, or drugs has physiological consequences similar to a rapid change in blood volume and thus strongly influences cardiac output. The Pmcf is defined as the mean vascular pressure that exists after a stop in cardiac output and redistribution of blood, so that all pressures are the same throughout the system. The Pmcf is thus related to the fullness of the circulatory system. A change in Pmcf provides a uniquely useful index of a change in overall venous smooth muscle tone if the blood volume is not concomitantly changed. The Pmcf also provides an estimate of the distending pressure in the small veins and venules, which contain most of the blood in the body and comprise most of the vascular compliance. Thus the Pmcf, which is normally independent of the magnitude of the cardiac output, provides an estimate of the upstream pressure that determines the rate of flow returning to the heart.


1991 ◽  
Vol 70 (2) ◽  
pp. 818-824 ◽  
Author(s):  
C. Risoe ◽  
C. Hall ◽  
O. A. Smiseth

We have investigated the effect of positive end-expiratory pressure ventilation (PEEP) on regional splanchnic vascular capacitance. In 12 anesthetized dogs hepatic and splenic blood volumes were assessed by sonomicrometry. Vascular pressure-diameter curves were defined by obstructing hepatic outflow. With 10 and 15 cmH2O PEEP portal venous pressure increased 3.1 +/- 0.3 and 5.1 +/- 0.4 mmHg (P less than 0.001) while hepatic venous pressure increased 4.9 +/- 0.4 and 7.3 +/- 0.4 mmHg (P less than 0.001), respectively. Hepatic blood volume increased (P less than 0.01) 3.8 +/- 0.9 and 6.3 +/- 1.4 ml/kg body wt while splenic volume decreased (P less than 0.01) 0.8 +/- 0.2 and 1.3 +/- 0.2 ml/kg body wt. The changes were similar with closed abdomen. The slope of the hepatic vascular pressure-diameter curves decreased with PEEP (P less than 0.01), possibly reflecting reduced vascular compliance. There was an increase (P less than 0.01) in unstressed hepatic vascular volume. The slope of the splenic pressure-diameter curves was unchanged, but there was a significant (P less than 0.05) decrease in unstressed diameter during PEEP. In conclusion, hepatic blood volume increased during PEEP. This was mainly a reflection of passive distension due to elevated venous pressures. The spleen expelled blood and thus prevented a further reduction in central blood volume.


1995 ◽  
Vol 269 (3) ◽  
pp. R678-R690 ◽  
Author(s):  
T. E. Lohmeier ◽  
G. A. Reinhart ◽  
H. L. Mizelle ◽  
J. P. Montani ◽  
R. Hester ◽  
...  

The purpose of this study was to elucidate the role of the renal nerves in promoting sodium retention during chronic reductions in cardiac output. In five dogs, the left kidney was denervated and the urinary bladder was surgically divided to allow separate 24-h urine collection from the innervated and denervated kidneys. Additionally, progressive reductions in cardiac output were achieved by employing an externally adjustable occluder around the pulmonary artery and by servo-controlling right atrial pressure (control = 0.9 +/- 0.2 mmHg) at 4.7 +/- 0.1, 7.5 +/- 0.1, and 9.8 +/- 0.2 mmHg for 3 days at each level. At the highest level of right atrial pressure, the 24-h values for mean arterial pressure (control = 97 +/- 3 mmHg) and cardiac output (control = 2,434 +/- 177 ml/min) were reduced approximately 25 and 55%, respectively; glomerular filtration rate fell by approximately 35% and renal plasma flow by approximately 65%. However, despite the sodium retention induced by these hemodynamic changes, there were no significant differences in renal hemodynamics or sodium excretion between the two kidneys during pulmonary artery constriction. In contrast, after release of the pulmonary artery occluder on day 9, sodium excretion increased more (approximately 28% during the initial 24 h) in innervated than in denervated kidneys. These results suggest that the renal nerves are relatively unimportant in promoting sodium retention in this model of low cardiac output but contribute significantly to the short-term elimination of sodium after partial restoration of cardiac output and mean arterial pressure.


1995 ◽  
Vol 73 (11) ◽  
pp. 1641-1650 ◽  
Author(s):  
Richard Ian Ogilvie ◽  
Danuta Zborowska-Sluis

The relationship between stressed and total blood volume, total vascular capacitance, central blood volume, cardiac output (CO), and pulmonary capillary wedge pressure (Ppcw) was investigated in pacing-induced acute and chronic heart failure. Acute heart failure was induced in anesthetized splenectomized dogs by a volume load (20 mL/kg over 10 min) during rapid right ventricular pacing at 250 beats/min (RRVP) for 60 min. Chronic heart failure was induced by continuous RRVP for 2–6 weeks (average 24 ± 2 days). Total vascular compliance and capacitance were calculated from the mean circulatory filling pressure (Pmcf) during transient circulatory arrest after acetylcholine at three different circulating volumes. Stressed blood volume was calculated as a product of compliance and Pmcf, with the total blood volume measured by a dye dilution. Central blood volume (CBV) and CO were measured by thermodilution. Central (heart and lung) vascular capacitance was estimated from the plot of Ppcw against CBV. Acute volume loading without RRVP increased capacitance and CO, whereas after volume loading with RRVP, capacitance and CO were unaltered from baseline. Chronic RRVP reduced capacitance and CO. All interventions, volume ± RRVP or chronic RRVP, increased stressed and central blood volumes and Ppcw. Acute or chronic RRVP reduced central vascular capacitance. Cardiac output was increased when stressed and unstressed blood volumes increased proportionately as during volume loading alone. When CO was reduced and Ppcw increased, as during chronic RRVP or acute RRVP plus a volume load, stressed blood volume was increased and unstressed blood volume was decreased. Thus, interventions that reduced CO and increased Ppcw also increased stressed and reduced unstressed blood volume and total vascular capacitance.Key words: vascular capacitance, vascular compliance, central blood volume, rapid ventricular pacing, dogs, heart failure.


1986 ◽  
Vol 250 (6) ◽  
pp. H1071-H1078
Author(s):  
C. P. Appleton ◽  
R. W. Lee ◽  
G. V. Martin ◽  
M. Olajos ◽  
S. Goldman

The peripheral circulatory effects of alpha 1-adrenoceptor stimulation with methoxamine hydrochloride were compared with those of alpha 2-stimulation with UK 14304-18 in 12 intact dogs. Doses of each agent were infused to increase systemic vascular resistance and arterial pressure 50 and then 100% above control. Heart rate was controlled with atropine. At the higher dose, methoxamine increased mean aortic pressure (PAo) from a control of 77.3 +/- 1.6 to 152.9 +/- 3.2 mmHg, mean circulatory filling pressure (MCFP) from 8.0 +/- 0.4 to 13.3 +/- 1.3 mmHg, and central blood volume (CBV) from 21.3 +/- 1.1 to 25.9 +/- 1.5 ml X kg-1, whereas cardiac output did not change. UK 14304-18 increased PAo from 78.1 +/- 2.6 to 148.9 +/- 2.7 mmHg, MCFP from 7.9 +/- 0.4 to 10.6 +/- 0.4 mmHg, and CBV from 21.0 +/- 1.1 to 24.1 +/- 1.5 ml X kg-1, whereas cardiac output decreased from 151.7 +/- 9.4 to 126.3 +/- 5.8 ml X kg-1 X min-1. Mean circulatory filling pressure and CBV were higher with methoxamine than with UK 14304-18. Effective vascular compliance, determined by serial measurements of MCFP during ganglionic blockade after rapid changes in blood volume, decreased from a control value of 1.9 +/- 0.1 to 1.3 +/- 0.3 ml X mmHg-1 X kg-1 with methoxamine, but did not change with UK 14304-18 (1.9 +/- 0.1 ml X mmHg-1 X kg-1). At any given change in blood volume, there was a higher MCFP with alpha 1-stimulation compared with alpha 2-stimulation. Both agents decreased unstressed vascular volume.(ABSTRACT TRUNCATED AT 250 WORDS)


1987 ◽  
Vol 253 (4) ◽  
pp. H751-H762 ◽  
Author(s):  
M. Rocha e Silva ◽  
I. T. Velasco ◽  
R. I. Nogueira da Silva ◽  
M. A. Oliveira ◽  
G. A. Negraes ◽  
...  

Severe hemorrhage in pentobarbital-anesthetized dogs (25 mg/kg) is reversed by intravenous NaCl (4 ml/kg, 2,400 mosmol/l, 98% long-term survival). This paper compares survival rates and hemodynamic and metabolic effects of hypertonic NaCl with sodium salts (acetate, bicarbonate, and nitrate), chlorides [lithium and tris(hydroxymethyl)aminomethane (Tris)], and nonelectrolytes (glucose, mannitol, and urea) after severe hemorrhage (44.5 +/- 2.3 ml/kg blood loss). Sodium salts had higher survival rates (chloride, 100%; acetate, 72%; bicarbonate, 61%; nitrate, 55%) with normal stable arterial pressure after chloride and nitrate; near normal cardiac output after sodium chloride; normal acid-base equilibrium after all sodium salts; and normal mean circulatory filling pressure after chloride, acetate, and bicarbonate. Chlorides and nonelectrolytes produced low survival rates (glucose and lithium, 5%; mannitol, 11%; Tris, 22%; urea, 33%) with low cardiac output, low mean circulatory filling pressure, and severe metabolic acidosis. Plasma sodium, plasma bicarbonate, mean circulatory filling pressure, cardiac output, and arterial pressure correlated significantly with survival; other parameters, including plasma volume expansion or plasma osmolarity, did not. It is proposed that high plasma sodium is essential for survival.


Sign in / Sign up

Export Citation Format

Share Document