When animals are not quite what they eat: diet digestibility influences 13C-incorporation rates and apparent discrimination in a mixed-feeding herbivore

2011 ◽  
Vol 89 (6) ◽  
pp. 453-465 ◽  
Author(s):  
Daryl Codron ◽  
Jacqui Codron ◽  
Matt Sponheimer ◽  
Stefano M. Bernasconi ◽  
Marcus Clauss

The stable carbon isotope composition of animal tissues represents the weighted sum of the variety of food sources eaten. If sources differ in digestibility, tissues may overrepresent intake of more digestible items and faeces may overrepresent less digestible items. We tested this idea using whole blood and faeces of goats ( Capra hircus L., 1758) fed different food mixtures of C3 lucerne ( Medicago sativa L.) and C4 grass ( Themeda triandra Forssk.). Although blood and faecal δ13C values were broadly consistent with diet, results indicate mismatch between consumer and diet isotope compositions: both materials overrepresented the C3 (lucerne) component of diets. Lucerne had lower fibre digestibility than T. triandra, which explains the results for faeces, whereas underrepresentation of dietary C4 in blood is consistent with low protein content of the grass hay. A diet switch experiment revealed an important difference in 13C-incorporation rates across diets, which were slower for grass than lucerne diets, and in fact equilibrium states were not reached for all diets. Although more research is needed to link digestive kinetics with isotope incorporation, these results provide evidence for nonlinear relationships between consumers and their diets, invoking concerns about the conceptual value of “discrimination factors” as the prime currency for contemporary isotope ecology.

1986 ◽  
Vol 64 (11) ◽  
pp. 2693-2699 ◽  
Author(s):  
Robert D. Guy ◽  
David M. Reid ◽  
H. Roy Krouse

Studies on various factors affecting the growth and stable carbon isotope composition of the graminaceous C3 halophyte Puccinellia nuttalliana (Schultes) Hitch. were initiated as a step towards interpreting δ13C variations in nature. For isotope analysis, combustion at 900 °C resulted in higher CO2 yield than at 550 °C but did not affect δ13C values. Differences in δ13C between leaves of different insertion level were unimportant, but roots were about 1‰ more positive than shoots. Trends in δ13C with salinity were the same in all plant parts. Depressions of growth by NaCl or Na2SO4 were similar, but plants grown in Na2SO4 displayed a greater shift in δ13C relative to controls. Growth rates were affected more by salinity than were previously reported photosynthetic rates. At typical salinities, δ13C changed linearly with salinity. The supply of nitrate to stressed and unstressed plants had no important influence on δ13C. Growth in polyethylene glycol produced δ13C values consistent with a high level of stress. After a salinity step-up, changes in δ13C were complete within 10 days. During winter, data were found to be heavily influenced by unintentional, human-respired CO2 enrichment. This represents a potentially serious research problem in laboratories of temperate climes.


2018 ◽  
Author(s):  
Manuel Kleiner ◽  
Xiaoli Dong ◽  
Tjorven Hinzke ◽  
Juliane Wippler ◽  
Erin Thorson ◽  
...  

AbstractMeasurements of the carbon stable isotope ratio (δ13C) are widely used in biology to address major questions regarding food sources and metabolic pathways used by organisms. Measurement of these so called stable carbon isotope fingerprints (SIFs) for microbes involved in biogeochemical cycling and microbiota of plants and animals have led to major discoveries in environmental microbiology. Currently, obtaining SIFs for microbial communities is challenging as the available methods either only provide limited taxonomic resolution, such as with the use of lipid biomarkers, or are limited in throughput, such as NanoSIMS imaging of single cells.Here we present “direct Protein-SIF” and the Calis-p software package (https://sourceforge.net/projects/calis-p/), which enable high-throughput measurements of accurate δ13C values for individual species within a microbial community. We benchmark the method using 20 pure culture microorganisms and show that the method reproducibly provides SIF values consistent with gold standard bulk measurements performed with an isotope ratio mass spectrometer. Using mock community samples, we show that SIF values can also be obtained for individual species within a microbial community. Finally, a case study of an obligate bacteria-animal symbiosis showed that direct Protein-SIF confirms previous physiological hypotheses and can provide unexpected new insights into the symbionts’ metabolism. This confirms the usefulness of this new approach to accurately determine δ13C values for different species in microbial community samples.SignificanceTo understand the roles that microorganisms play in diverse environments such as the open ocean and the human intestinal tract, we need an understanding of their metabolism and physiology. A variety of methods such as metagenomics and metaproteomics exist to assess the metabolism of environmental microorganisms based on gene content and gene expression. These methods often only provide indirect evidence for which substrates are used by a microorganism in a community. The direct Protein-SIF method that we developed allows linking microbial species in communities to the environmental carbon sources they consume by determining their stable carbon isotope signature. Direct Protein-SIF also allows assessing which carbon fixation pathway is used by autotrophic microorganisms that directly assimilate CO2.


Radiocarbon ◽  
2019 ◽  
Vol 61 (4) ◽  
pp. 885-903 ◽  
Author(s):  
Rūta Barisevičiūtė ◽  
Evaldas Maceika ◽  
Žilvinas Ežerinskis ◽  
Jonas Mažeika ◽  
Laurynas Butkus ◽  
...  

ABSTRACTIn this study, we examined how land use and urbanization changes in adjacent areas affected biological productivity and carbon cycling in a lake ecosystem over 100 years and how these changes are reflected in carbon isotope variations. We performed radiocarbon (14C) activity and stable carbon isotope ratio analysis in two organic fractions: humin and humic acids of lake sediment. Additionally, we performed pigment and diatom analysis and determined the carbonate and organic matter (OM) content in sediments. Over the last century, the estimated 14C reservoir age in both sediment organic fractions varied from 1136 ± 112 yr to 5733 ± 122 yr. The increase in the reservoir age by 1175 ± 111 yr was related with higher inputs of pre-aged organic carbon and 14C depleted hard water due to the opening of the channel connecting two lakes. Nuclear weapons tests caused an increase in the reservoir age of up to 5421 ± 135 yr and 5733 ± 122 yr in humin and humic acids, respectively. 13C values in the humic acid fraction showed a tendency to decrease, depending on the content of autochthonous versus allochthonous OM in sediments, while changes in the sources of OM had a minor impact on the stable carbon isotope composition in the humin fraction.


Sign in / Sign up

Export Citation Format

Share Document