Analysing the information flow between financial time series

2002 ◽  
Vol 30 (2) ◽  
pp. 275-281 ◽  
Author(s):  
R. Marschinski ◽  
H. Kantz
2021 ◽  
Vol 5 (1) ◽  
pp. 33
Author(s):  
Petr Jizba ◽  
Hynek Lavička ◽  
Zlata Tabachová

In this paper, we discuss the statistical coherence between financial time series in terms of Rényi’s information measure or entropy. In particular, we tackle the issue of the directional information flow between bivariate time series in terms of Rényi’s transfer entropy. The latter represents a measure of information that is transferred only between certain parts of underlying distributions. This fact is particularly relevant in financial time series, where the knowledge of “black swan” events such as spikes or sudden jumps is of key importance. To put some flesh on the bare bones, we illustrate the essential features of Rényi’s information flow on two coupled GARCH(1,1) processes.


Electronics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 823
Author(s):  
Tianle Zhou ◽  
Chaoyi Chu ◽  
Chaobin Xu ◽  
Weihao Liu ◽  
Hao Yu

In this study, a new idea is proposed to analyze the financial market and detect price fluctuations, by integrating the technology of PSR (phase space reconstruction) and SOM (self organizing maps) neural network algorithms. The prediction of price and index in the financial market has always been a challenging and significant subject in time-series studies, and the prediction accuracy or the sensitivity of timely warning price fluctuations plays an important role in improving returns and avoiding risks for investors. However, it is the high volatility and chaotic dynamics of financial time series that constitute the most significantly influential factors affecting the prediction effect. As a solution, the time series is first projected into a phase space by PSR, and the phase tracks are then sliced into several parts. SOM neural network is used to cluster the phase track parts and extract the linear components in each embedded dimension. After that, LSTM (long short-term memory) is used to test the results of clustering. When there are multiple linear components in the m-dimension phase point, the superposition of these linear components still remains the linear property, and they exhibit order and periodicity in phase space, thereby providing a possibility for time series prediction. In this study, the Dow Jones index, Nikkei index, China growth enterprise market index and Chinese gold price are tested to determine the validity of the model. To summarize, the model has proven itself able to mark the unpredictable time series area and evaluate the unpredictable risk by using 1-dimension time series data.


Sign in / Sign up

Export Citation Format

Share Document