scholarly journals Z boson production in bottom-quark fusion: a study of b-mass effects beyond leading order

2018 ◽  
Vol 78 (11) ◽  
Author(s):  
Stefano Forte ◽  
Davide Napoletano ◽  
Maria Ubiali
2010 ◽  
Vol 25 (36) ◽  
pp. 3047-3059 ◽  
Author(s):  
SHIGERU ODAKA

We show that the transverse momentum (pT) spectrum of Z boson production measured at Fermilab Tevatron can be well reproduced by leading-order event generators if Z + 1 jet processes are included with a proper solution for the double-count problem and if the parton shower (PS) branch kinematics are defined appropriately. The choice of the PS evolution variable does not definitely determine the low-pT behavior. Our new event generator employing the limited leading-log (LLL) subtraction and a built-in leading-log PS reproduces the spectrum very well, not only in large pT regions but also at low pT down to pT = 0.


2016 ◽  
Vol 116 (15) ◽  
Author(s):  
Radja Boughezal ◽  
John Campbell ◽  
R. Keith Ellis ◽  
Christfried Focke ◽  
Walter Giele ◽  
...  

2020 ◽  
Vol 80 (10) ◽  
Author(s):  
Rikkert Frederix ◽  
Timea Vitos

AbstractWe present next-to-leading order (NLO) electroweak corrections to the dominant five angular coefficients parametrizing the Drell–Yan process in the Z-boson mass peak range for finite-$$p_T$$ p T vector boson production. The results are presented differentially in the vector boson transverse momentum. The Lam–Tung violating difference $$A_0-A_2$$ A 0 - A 2 is examined alongside the coefficients. A single lepton transverse momentum cut is needed in the case of electroweak corrections to avoid a double singularity in the photon induced diagrams, and the dependence on the value of this cut is examined. We compare the electroweak corrections to the angular coefficients to the NLO QCD corrections, including the single lepton cut. The size of the single lepton cut is found to affect the two coefficients $$A_0$$ A 0 and $$A_2$$ A 2 to largest extent. The relative size of the electroweak corrections to the coefficients is moderate for all single lepton cut values, and by extrapolation to the inclusive results, is moderate also for the full dilepton phase space case. However, for the Lam–Tung violation, there is a significant contribution from the electroweak corrections for low $$p_T$$ p T of the lepton pair.


2021 ◽  
Vol 103 (5) ◽  
Author(s):  
Matteo Becchetti ◽  
Roberto Bonciani ◽  
Vittorio Del Duca ◽  
Valentin Hirschi ◽  
Francesco Moriello ◽  
...  

2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
S. Acharya ◽  
◽  
D. Adamová ◽  
A. Adler ◽  
J. Adolfsson ◽  
...  

Abstract Measurement of Z-boson production in p-Pb collisions at $$ \sqrt{s_{\mathrm{NN}}} $$ s NN = 8.16 TeV and Pb-Pb collisions at $$ \sqrt{s_{\mathrm{NN}}} $$ s NN = 5.02 TeV is reported. It is performed in the dimuon decay channel, through the detection of muons with pseudorapidity −4 < ημ< −2.5 and transverse momentum $$ {p}_{\mathrm{T}}^{\mu } $$ p T μ > 20 GeV/c in the laboratory frame. The invariant yield and nuclear modification factor are measured for opposite-sign dimuons with invariant mass 60 < mμμ< 120 GeV/c2 and rapidity 2.5 <$$ {y}_{\mathrm{cms}}^{\mu \mu} $$ y cms μμ < 4. They are presented as a function of rapidity and, for the Pb-Pb collisions, of centrality as well. The results are compared with theoretical calculations, both with and without nuclear modifications to the Parton Distribution Functions (PDFs). In p-Pb collisions the center-of-mass frame is boosted with respect to the laboratory frame, and the measurements cover the backward (−4.46 <$$ {y}_{\mathrm{cms}}^{\mu \mu} $$ y cms μμ < −2.96) and forward (2.03 <$$ {y}_{\mathrm{cms}}^{\mu \mu} $$ y cms μμ < 3.53) rapidity regions. For the p-Pb collisions, the results are consistent within experimental and theoretical uncertainties with calculations that include both free-nucleon and nuclear-modified PDFs. For the Pb-Pb collisions, a 3.4σ deviation is seen in the integrated yield between the data and calculations based on the free-nucleon PDFs, while good agreement is found once nuclear modifications are considered.


Sign in / Sign up

Export Citation Format

Share Document