scholarly journals Effects of longitudinal short-distance constraints on the hadronic light-by-light contribution to the muon $$\mathbf {g-2}$$

2020 ◽  
Vol 80 (12) ◽  
Author(s):  
Jan Lüdtke ◽  
Massimiliano Procura

AbstractWe present a model-independent method to estimate the effects of short-distance constraints (SDCs) on the hadronic light-by-light contribution to the muon anomalous magnetic moment $$a_\mu ^\text {HLbL}$$ a μ HLbL . The relevant loop integral is evaluated using multi-parameter families of interpolation functions, which satisfy by construction all constraints derived from general principles and smoothly connect the low-energy region with those where either two or all three independent photon virtualities become large. In agreement with other recent model-based analyses, we find that the SDCs and thus the infinite towers of heavy intermediate states that are responsible for saturating them have a rather small effect on $$a_\mu ^\text {HLbL}$$ a μ HLbL . Taking as input the known ground-state pseudoscalar pole contributions, we obtain that the longitudinal SDCs increase $$a_\mu ^\text {HLbL}$$ a μ HLbL by $$(9.1\pm 5.0) \times 10^{-11}$$ ( 9.1 ± 5.0 ) × 10 - 11 , where the isovector channel is responsible for $$(2.6\pm 1.5) \times 10^{-11}$$ ( 2.6 ± 1.5 ) × 10 - 11 . More precise estimates can be obtained with our method as soon as further accurate, model-independent information about important low-energy contributions from hadronic states with masses up to 1–2 GeV become available.

2022 ◽  
Vol 258 ◽  
pp. 06005
Author(s):  
Johan Bijnens ◽  
Nils Hermansson-Truedsson ◽  
Antonio Rodríguez-Sánchez

Model-independent short-distance constraints allow for a reduction of theoretical uncertainties associated to the analytic evaluation of Hadronic Light-by-Light contributions to the muon g-2. In this talk we focus on the region where the three loop virtualities are large. Even when the fourth photon leg is soft, we show how a precise Operator Product Expansion can be applied in that region. The leading contribution is found to be given by the quark loop, while the evaluation of both gluonic and power corrections show how the expansion is well behaved at relatively low energies, where significant contributions to the muon g-2 remain. Numerical values for them are also presented.


2019 ◽  
Vol 798 ◽  
pp. 134994 ◽  
Author(s):  
Johan Bijnens ◽  
Nils Hermansson-Truedsson ◽  
Antonio Rodríguez-Sánchez

2019 ◽  
Vol 2 (1) ◽  
pp. 66-68 ◽  
Author(s):  
Andrea Messori ◽  
Vera Damuzzo ◽  
Laura Agnoletto ◽  
Luca Leonardi ◽  
Marco Chiumente ◽  
...  

1974 ◽  
Vol 486 (4) ◽  
pp. 335-337 ◽  
Author(s):  
J. Klosiński ◽  
J. Rembieliński ◽  
W. Tybor

1984 ◽  
Vol 224 (1-2) ◽  
pp. 298-302 ◽  
Author(s):  
V.F. Polcaro ◽  
A. Bazzano ◽  
P. Ubertini ◽  
C. La Padula ◽  
R.K. Manchanda

1997 ◽  
Vol 50 (4) ◽  
pp. 745 ◽  
Author(s):  
S. M. Thurgate

Abstract In 1925 Pierre Auger reported on his observations of low energy electrons associated with core-ionised atoms in cloud chamber experiments. He was able to correctly identify the mechanism for their production, and such electrons are now known as Auger electrons. Typically Auger electrons have energies in the range 10 eV to 2 keV. The short distance that such low energy electrons travel in solids ensures that Auger electrons come from the surface layers. The data generated by the AES technique are complex. There are at least three electrons involved in the process, and there are many possible configurations for the atom. These possibilities led to spectra that are not readily interpreted in detail. Theory lags behind experiment in this area. In principle, it should be possible to find information about the chemical environment of atoms from Auger spectra. While there are clear changes in spectral lineshapes, there is no simple way to go from the spectra to an understanding of the chemical bonding of the atom. There are a number of experiments currently underway which aim to improve our understanding of the Auger process. Synchrotron experiments with tunable energy x-rays are providing new insight. Experiments that use positrons to excite Auger emission have also produced further recent understanding. Coincidence experiments between photoelectrons and Auger electrons have also made recent advances. Auger photoelectron coincidence spectroscopy reduces the complexity of Auger spectra by only counting those electrons that occur as a consequence of selected ionisations. The effect is to reduce the complexity of the spectra, and to isolate processes that are often clouded by the simultaneous occurrence of other effects.


2021 ◽  
Vol 81 (3) ◽  
Author(s):  
Maximilian Dax ◽  
Dominik Stamen ◽  
Bastian Kubis

AbstractWe provide a dispersion-theoretical representation of the reaction amplitudes $$\gamma K\rightarrow K \pi $$ γ K → K π in all charge channels, based on modern pion–kaon P-wave phase shift input. Crossed-channel singularities are fixed from phenomenology as far as possible. We demonstrate how the subtraction constants can be matched to a low-energy theorem and radiative couplings of the $$K^*(892)$$ K ∗ ( 892 ) resonances, thereby providing a model-independent framework for future analyses of high-precision kaon Primakoff data.


Sign in / Sign up

Export Citation Format

Share Document