auger spectroscopy
Recently Published Documents


TOTAL DOCUMENTS

659
(FIVE YEARS 18)

H-INDEX

44
(FIVE YEARS 2)

2021 ◽  
Vol 99 (3) ◽  
pp. 40-48
Author(s):  
Y.G. Aftandiliants ◽  

The results of the study of the influence of nickel and molybdenum on the structure and chemical composition of the fracture surface of cast iron with spherical graphite are presented in the paper. It is shown that the fracture of cast iron with spherical graphite occurs along the boundaries of the distribution of graphite balls with matrix, and the fracture of the matrix occurs both by the mechanism of intergranular and transgranular fractures. Molybdenum and nickel alloying changes the mechanism of transgranular fracture of the matrix from brittle for ordinary cast iron to viscous for molybdenum and nickel alloying. It is established that the fracture surfaces of cast iron, depending on the analysis places there are elements such as O, C, P, N, Cu, Ni, Si, Mg. Studies of the distribution of impurities in the near-surface layers of the destroyed samples have shown that the quantity of elements such as oxygen, phosphorus and nitrogen decreases with increasing distance from the fracture surface. The phosphorus quantity is reduced by 40 - 45% in the places of the cast iron matrix, where the graphite balls were located during the alloying of cast iron by molybdenum and nickel. Keywords: cast iron, nickel, molybdenum, alloying, Auger spectroscopy, chemical composition, structure, fracture, surface.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1102
Author(s):  
Devthade Vidyasagar ◽  
Yong-Han Yun ◽  
Seunghak Shin ◽  
Jina Jung ◽  
Woosung Park ◽  
...  

Organo-halide perovskite solar cells (PSCs) have emerged as next-generation photovoltaics, owing to their high power-conversion efficiency (PCE), lower production cost, and high flexibility. ABX3-structured methylammonium lead triiodide (CH3NH3PbI3 or MAPbI3) perovskite is a widely studied light-absorbing material in PSCs. Interestingly, a small amount of chlorine incorporation into MAPbI3 increases charge carrier diffusion lengths (from 129 nm to 1069 nm), which enables planar structured PSCs with high PCEs. However, existence of chloride ions in the final perovskite film is still under debate. Contrastingly, few studies reported a negligible amount or absence of chloride ions in the final film, while others reported detection of chloride ions in the final film. Herein, we observed the microstructure and chlorine content of MAPbI3-xClx thin films with increasing temperature via an in-situ nano-Auger spectroscopy and in-situ scanning electron microscopic analysis. The relative precipitation of MAPbI3-xClx films occur at lower temperature and MAPbI3-xClx grains grow faster than those of MAPbI3 grains. Local concentrations of chlorine at intragrain and the vicinity of grain boundary were analyzed to understand the behavior and role of the chloride ions during the microstructural evolution of the MAPbI3-xClx films.


2021 ◽  
Author(s):  
L. N. Maskaeva ◽  
I. N. Miroshnikova ◽  
I. V. Vaganova ◽  
V. S. Belov ◽  
V. I. Voronin ◽  
...  

2021 ◽  
pp. 30-34
Author(s):  
DMITRIY VLADIMIROVICH FOMIN ◽  
◽  
NIKITA SERGEEVICH NOVGORODTSEV ◽  
DMITRIY OLEGOVICH STRUKOV ◽  
ALEXEY VYACHESLAVOVICH POLYAKOV ◽  
...  

The paper presents information on the results of the formation of a thin Mg2Si film on a silicon substrate by solid-phase epitaxy in an ultrahigh-vacuum chamber of the PHI model 590 device. There are a number of difficulties in the formation of magnesium silicide films due to the low condensation coefficient and high vapor pressure. Effective methods for the formation of Mg2Si are currently being sought. As a result of our experiment, a thin film was obtained, which was studied in-situ by the method of electron Auger spectroscopy and spectroscopy of characteristic energy losses by electrons. Analysis of the Auger electron spectrum showed the presence of magnesium and silicon atoms in the composition of the formed film. From the analysis of the EELS spectra, it was found that a thin film of silicide magnesium was formed.


2020 ◽  
Vol 17 (1) ◽  
pp. 21-28
Author(s):  
О. В. Глушков ◽  
В. В. Буяджи ◽  
А. В. Цудик ◽  
O. С. Чернишев ◽  
Е. O. Єфімова

Sign in / Sign up

Export Citation Format

Share Document