Shock waves in magnetized electronegative plasma with nonextensive electrons

2020 ◽  
Vol 74 (5) ◽  
Author(s):  
Salah K. El-Labany ◽  
Ebraheem E. Behery ◽  
Hosam N. Abd El-Razek ◽  
Lamiaa A. Abdelrazek
2011 ◽  
Vol 89 (10) ◽  
pp. 1073-1078 ◽  
Author(s):  
Hamid Reza Pakzad

The reductive perturbation method is used to derive the Kordeweg – de Vries – Burgers equation in strongly coupled dusty plasmas containing Boltzmann distributed ions and q-nonextensive electrons. It is observed that the nonlinear propagation of the dust acoustic waves gives rise to shock structures when there is strong correlation among the dust grains. The effect of the q-nonextensive parameter on the shock waves is discussed.


Author(s):  
M.A. Mogilevsky ◽  
L.S. Bushnev

Single crystals of Al were loaded by 15 to 40 GPa shock waves at 77 K with a pulse duration of 1.0 to 0.5 μs and a residual deformation of ∼1%. The analysis of deformation structure peculiarities allows the deformation history to be re-established.After a 20 to 40 GPa loading the dislocation density in the recovered samples was about 1010 cm-2. By measuring the thickness of the 40 GPa shock front in Al, a plastic deformation velocity of 1.07 x 108 s-1 is obtained, from where the moving dislocation density at the front is 7 x 1010 cm-2. A very small part of dislocations moves during the whole time of compression, i.e. a total dislocation density at the front must be in excess of this value by one or two orders. Consequently, due to extremely high stresses, at the front there exists a very unstable structure which is rearranged later with a noticeable decrease in dislocation density.


Sign in / Sign up

Export Citation Format

Share Document