Kadomtsev–Petviashvili solitons in a warm electronegative plasma withq-nonextensive electrons

2014 ◽  
Vol 90 (1) ◽  
pp. 015602 ◽  
Author(s):  
S Ali Shan ◽  
N Akhtar ◽  
A Mushtaq
2020 ◽  
Vol 74 (5) ◽  
Author(s):  
Salah K. El-Labany ◽  
Ebraheem E. Behery ◽  
Hosam N. Abd El-Razek ◽  
Lamiaa A. Abdelrazek

2020 ◽  
Vol 75 (12) ◽  
pp. 999-1007
Author(s):  
Rustam Ali ◽  
Anjali Sharma ◽  
Prasanta Chatterjee

AbstractHead-on interaction of four dust ion acoustic (DIA) solitons and the statistical properties of the wave field due to head-on interaction of solitons moving in opposite direction is studied in the framework of two Korteweg de Vries (KdV) equations. The extended Poincaré–Lighthill–Kuo (PLK) method is applied to obtain two opposite moving KdV equations from an unmagnetized four component plasma model consisting of Maxwellian negative ions, cold mobile positive ions, κ-distributed electrons and positively charged dust grains. Hirota’s bilinear method is adopted to obtain two-soliton solutions of both the KdV equations and accordingly act of soliton turbulence is presented due to head-on collision of four solitons. The amplitude and shape of the resultant wave profile at the point of strongest interaction are obtained. To see the effect of head-on collision on the statistical properties of wave field the first four moments are computed. It is observed that the head-on collision has no effect on the first integral moment while the second, third and fourth moments increase in the dominant interaction region of four solitons, which is a clean indication of soliton turbulence.


2010 ◽  
Vol 76 (3-4) ◽  
pp. 409-418 ◽  
Author(s):  
A. A. MAMUN ◽  
K. S. ASHRAFI ◽  
M. G. M. ANOWAR

AbstractThe dust ion-acoustic solitary waves (SWs) in an unmagnetized dusty adiabatic electronegative plasma containing inertialess adiabatic electrons, inertial single charged adiabatic positive and negative ions, and stationary arbitrarily (positively and negatively) charged dust have been theoretically studied. The reductive perturbation method has been employed to derive the Korteweg-de Vries equation which admits an SW solution. The combined effects of the adiabaticity of plasma particles, inertia of positive or negative ions, and presence of positively or negatively charged dust, which are found to significantly modify the basic features of small but finite-amplitude dust-ion-acoustic SWs, are explicitly examined. The implications of our results in space and laboratory dusty electronegative plasmas are briefly discussed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
I. S. Elkamash ◽  
I. Kourakis

AbstractA one-dimensional multifluid hydrodynamic model has been adopted as basis for an investigation of the role of suprathermal electrons on the wave breaking amplitude limit for electrostatic excitations propagating in an electronegative plasma. A three-component plasma is considered, consisting of two inertial cold ion populations of opposite signs, evolving against a uniform background of (non-Maxwellian) electrons. A kappa-type (non-Maxwellian) distribution function is adopted for the electrons. By employing a traveling wave approximation, the first integral for the fluid-dynamical system has been derived, in the form of a pseudo-energy balance equation, and analyzed. The effect of intrinsic plasma parameters (namely the ion density ratio, the ion mass ratio, and the superthermal index of the nonthermal electrons) on the wave breaking amplitude limit is explored, by analyzing the phase space topology of the associated pseudopotential function. Our results are relevant to particle acceleration in Space environments and to recent experiments based on plasma-based accelerator schemes, where the simultaneous presence of negative ions and nonthermal electrons may be observed.


2011 ◽  
Vol 18 (10) ◽  
pp. 104503 ◽  
Author(s):  
A. S. Bains ◽  
Mouloud Tribeche ◽  
N. S. Saini ◽  
T. S. Gill

2010 ◽  
Vol 108 (10) ◽  
pp. 103305 ◽  
Author(s):  
E. Kawamura ◽  
A. J. Lichtenberg ◽  
M. A. Lieberman

2008 ◽  
Vol 36 (4) ◽  
pp. 996-997 ◽  
Author(s):  
Matthew J. Goeckner ◽  
Caleb T. Nelson ◽  
Lawrence J. Overzet

Sign in / Sign up

Export Citation Format

Share Document