Chromatin code, local non-equilibrium dynamics, and the emergence of transcription regulatory programs

2006 ◽  
Vol 19 (3) ◽  
pp. 353-366 ◽  
Author(s):  
A. Benecke
2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Marco Baity-Jesi ◽  
Enrico Calore ◽  
Andrés Cruz ◽  
Luis Antonio Fernandez ◽  
José Miguel Gil-Narvion ◽  
...  

AbstractExperiments featuring non-equilibrium glassy dynamics under temperature changes still await interpretation. There is a widespread feeling that temperature chaos (an extreme sensitivity of the glass to temperature changes) should play a major role but, up to now, this phenomenon has been investigated solely under equilibrium conditions. In fact, the very existence of a chaotic effect in the non-equilibrium dynamics is yet to be established. In this article, we tackle this problem through a large simulation of the 3D Edwards-Anderson model, carried out on the Janus II supercomputer. We find a dynamic effect that closely parallels equilibrium temperature chaos. This dynamic temperature-chaos effect is spatially heterogeneous to a large degree and turns out to be controlled by the spin-glass coherence length ξ. Indeed, an emerging length-scale ξ* rules the crossover from weak (at ξ ≪ ξ*) to strong chaos (ξ ≫ ξ*). Extrapolations of ξ* to relevant experimental conditions are provided.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
T. M. Wintermantel ◽  
M. Buchhold ◽  
S. Shevate ◽  
M. Morgado ◽  
Y. Wang ◽  
...  

AbstractWhether it be physical, biological or social processes, complex systems exhibit dynamics that are exceedingly difficult to understand or predict from underlying principles. Here we report a striking correspondence between the excitation dynamics of a laser driven gas of Rydberg atoms and the spreading of diseases, which in turn opens up a controllable platform for studying non-equilibrium dynamics on complex networks. The competition between facilitated excitation and spontaneous decay results in sub-exponential growth of the excitation number, which is empirically observed in real epidemics. Based on this we develop a quantitative microscopic susceptible-infected-susceptible model which links the growth and final excitation density to the dynamics of an emergent heterogeneous network and rare active region effects associated to an extended Griffiths phase. This provides physical insights into the nature of non-equilibrium criticality in driven many-body systems and the mechanisms leading to non-universal power-laws in the dynamics of complex systems.


2003 ◽  
Vol 318 (1-2) ◽  
pp. 146-151 ◽  
Author(s):  
Jiangxing Chen ◽  
Yigang Cao ◽  
Zhengkuan Jiao

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Lisa M. Alexander ◽  
Daniel H. Goldman ◽  
Liang M. Wee ◽  
Carlos Bustamante

Sign in / Sign up

Export Citation Format

Share Document