scholarly journals Confinement versus interface bound states in spin-orbit coupled nanowires

2020 ◽  
Vol 135 (7) ◽  
Author(s):  
Lorenzo Rossi ◽  
Fabrizio Dolcini ◽  
Fausto Rossi

AbstractSemiconductor nanowires with strong Rashba spin-orbit coupling are currently on the spotlight of several research fields such as spintronics, topological materials and quantum computation. While most theoretical models assume an infinitely long nanowire, in actual experimental setups the nanowire has a finite length, is contacted to metallic electrodes and is partly covered by gates. By taking these effects into account through an inhomogeneous spin-orbit coupling profile, we show that in general two types of bound states arise in the nanowire, namely confinement bound states and interface bound states. The appearance of confinement bound states, related to the finite length of the nanowire, is favoured by a mismatch of the bulk band bottoms characterizing the lead and the nanowire, and occurs even in the absence of magnetic field. In contrast, an interface bound states may only appear if a magnetic field applied perpendicularly to the spin-orbit field direction overcomes a critical value, and is favoured by an alignment of the band bottoms of the two regions across the interface. We describe in details the emergence of these two types of bound states, pointing out their differences. Furthermore, we show that when a nanowire portion is covered by a gate the application of a magnetic field can change the nature of the electronic ground state from a confinement to an interface bound state, determining a redistribution of the electron charge.

2021 ◽  
Author(s):  
Elham Sadeghi ◽  
Hamed Rezania

Abstract In this paper, the transport properties of a two-dimensional Lieb lattice that is a line-centered square lattice are investigated in the presence of magnetic field and spin-orbit coupling. Specially, we address the temperature dependence of electrical and thermal conductivities as well as Seebeck coefficient due to spin-orbit interaction. We have exploited Green’s function approach in order to study thermoelectric and transport properties of Lieb lattice in the context of Kane-Mele model Hamiltonian. The results for Seebeck coefficient show the sign of thermopower is positive in the presence of spin-orbit coupling. Also the temperature dependence of transport properties indicates that the increase of spin-orbit coupling leads to decrease thermal conductivity however the decrease of gap 1 parameter causes the reduction of thermal conductivity. There is a peak in temperature dependence of thermal conductivity for all values of magnetic fields and spin-orbit coupling strengths. Both electrical and thermal conductivities increase with increasing the temperature at low amounts of temperature due to the increasing of transition rate of charge carriers and excitation of them to the conduction bands. Also we have studied the temperature dependence of spin susceptibility of Lieb monolayer due to both spin orbit coupling and magnetic field factors in details.


Sign in / Sign up

Export Citation Format

Share Document