First-principles investigations on the electronic structures, polycrystalline elastic properties, ideal strengths and elastic anisotropy of U3Si2

2021 ◽  
Vol 136 (4) ◽  
Author(s):  
Kun Wang ◽  
Yingjie Qiao ◽  
Xiaohong Zhang ◽  
Xiaodong Wang ◽  
Yiming Zhang ◽  
...  
2017 ◽  
Vol 31 (02) ◽  
pp. 1650263
Author(s):  
J. G. Yan ◽  
Z. J. Chen ◽  
G. B. Xu ◽  
Z. Kuang ◽  
T. H. Chen ◽  
...  

Using first-principles calculation we investigated the structural, electronic and elastic properties of paramagnetic CaFeAs2. Our results indicated that the density of states (DOS) was dominated predominantly by Fe-3[Formula: see text] states at Fermi levels, and stronger hybridization exists between As1 and As1 atoms. Three hole pockets are formed at [Formula: see text] and Z points, and two electronic pockets are formed at A and E points. The Dirac cone-like bands appear near B and D points. For the first time we calculated the elastic properties and found that CaFeAs2 is a mechanically stable and moderately hard material, it has elastic anisotropy and brittleness, which agrees well with the bonding picture and the calculation of Debye temperature ([Formula: see text]).


2009 ◽  
Vol 1224 ◽  
Author(s):  
Yunjiang Wang ◽  
Chongyu Wang

AbstractThe effect of alloying elements Ta, Mo, W, Cr, Re, Ru, Co, and Ir on the elastic properties of both γ-Ni and γ′-Ni3Al is studied by first-principles method. Results for lattice properties, elastic moduli and the ductile/brittle behaviors are all presented. Our calculated values agree well with the existing experimental observations. Results show all the additions decrease the lattice misfit between and γ′ phases. Different alloying elements are found to have different effect on the elastic moduli of γ-Ni. Whereas all the alloying elements slightly increase the moduli of γ′-Ni3Al expect Co. Both of the two phases are becoming more brittle with alloying elements, but Co is excepted. The electronic structures of γ′ phase alloyed with different elements are provided as example to elucidate the different strengthening mechanisms.


2010 ◽  
Vol 25 (12) ◽  
pp. 2317-2324 ◽  
Author(s):  
Hui-Yuan Wang ◽  
Wen-Ping Si ◽  
Shi-Long Li ◽  
Nan Zhang ◽  
Qi-Chuan Jiang

The formation enthalpy, electronic structures, and elastic moduli of the intermetallic compound Ti5Si3 with substitutions Zr, V, Nb, and Cr are investigated by using first-principles methods based on the density-functional theory. Our calculation shows that the site occupancy behaviors of alloying elements in Ti5Si3, determined by their atom radius, are consistent with the available experimental observations. Furthermore, using the Voigt–Reuss–Hill (VRH) approximation method, we obtained the bulk modulus B, shear modulus G, and the Young’s modulus E. Among these four substitutions, the V, Nb, and Cr substitutions can improve the ductility of Ti5Si3 effectively, while Zr substitution has little effect on the elastic properties of Ti5Si3. The elastic property variations of Ti5Si3 due to different substitutions are found to be correlated with the Me4d–Me4d antibonding and the strengthened Me4d–Si bonding in the solids.


2009 ◽  
Vol 45 (4) ◽  
pp. 986-992 ◽  
Author(s):  
C.T. Zhou ◽  
B. Xiao ◽  
J. Feng ◽  
J.D. Xing ◽  
X.J. Xie ◽  
...  

Author(s):  
Wen Liu ◽  
Chi Zhang ◽  
Chunge Wang ◽  
Xiang Yan ◽  
Xiaoxiong Hu ◽  
...  

Abstract In this work, using the first-principles method, the alloying stability, electronic structure, and elastic properties of Al-based intermetallics were investigated. It was found that these alloys have a strong alloying ability and structural stability due to the negative formation energies and the cohesive energies. The valence bonds of these intermetallic compounds are attributed to the valence electrons of Cu 3δ states for AlCu3, Cu 3δ and Zr 4δ states for AlCu2Zr, and Al 3s, Zr 5s and 4δ states for AlZr3, respectively. Furthermore, the correlation between elastic properties of these intermetallic compounds and their electronic structures was revealed. The results show that structural parameters and elastic properties such as bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio and anisotropy agreed well with experimental results.


Sign in / Sign up

Export Citation Format

Share Document