scholarly journals Cherenkov probes and runaway electrons diagnostics

2021 ◽  
Vol 136 (10) ◽  
Author(s):  
R. Kwiatkowski ◽  
M. Rabinski ◽  
M. J. Sadowski ◽  
J. Zebrowski ◽  
P. Karpinski ◽  
...  

AbstractThe beams of fast runaway electrons (RE), which are often produced during tokamak discharges, are particularly dangerous and can induce serious damages of the vacuum vessel and internal components of the machine. The proper and fast diagnostics of RE beams is essential for controlling the discharge, e.g., by early mitigation of disruptions and potentially dangerous RE beams. The diagnostics of RE beams is usually based on measurements of the radiation emitted either by these electrons, or as a result of their interactions with plasma and/or vessel walls. Such a radiation is usually recorded by the means of probes placed outside the vacuum vessel. The method developed by our team is based on the probe located inside the vacuum vessel. The probe can be used to detect highly localized RE bunches and to determine their spatial and temporal characteristics. During last few years, the NCBJ team have developed and used the RE diagnostics based on the Cherenkov effect observed in diamond radiators coupled with fast photomultipliers. During the investigated discharges, the probe was inserted into the vacuum vessel, and its head was placed at the plasma edge, where fast RE are expected. A correlation between signals recorded using our probes and other diagnostics, e.g., hard x-ray signals, was also studied. In this paper, we present recent results of the RE measurements by means of Cherenkov probes, which were performed in the COMPASS and TCV tokamaks.

2007 ◽  
Vol 33 (6) ◽  
pp. 396-410 ◽  
Author(s):  
A. M. Urnov ◽  
S. V. Shestov ◽  
S. A. Bogachev ◽  
F. F. Goryaev ◽  
I. A. Zhitnik ◽  
...  

2021 ◽  
Vol 170 ◽  
pp. 112522
Author(s):  
Soobin Lim ◽  
Jonggab Jo ◽  
Changwook Koo ◽  
Sung-Joon Ye ◽  
Kyoung-Jae Chung ◽  
...  
Keyword(s):  

2010 ◽  
Vol 19 (1) ◽  
pp. 14 ◽  
Author(s):  
Katarzyna Grala ◽  
William H. Cooke

Forests constitute a large percentage of the total land area in Mississippi and are a vital element of the state economy. Although wildfire occurrences have been considerably reduced since the 1920s, there are still ~4000 wildfires each year in Mississippi burning over 24 000 ha (60 000 acres). This study focusses on recent history and various characteristics of Mississippi wildfires to provide better understanding of spatial and temporal characteristics of wildfires in the state. Geographic information systems and Mississippi Forestry Commission wildfire occurrence data were used to examine relationships between climatic and anthropogenic factors, the incidence, burned area, wildfire cause, and socioeconomic factors. The analysis indicated that wildfires are more frequent in southern Mississippi, in counties covered mostly by pine forest, and are most prominent in the winter–spring season. Proximity to roads and cities were two anthropogenic factors that had the most statistically significant correlation with wildfire occurrence and size. In addition, the validity of the Palmer Drought Severity Index as a measure of fire activity was tested for climatic districts in Mississippi. Analysis indicated that drought influences fire numbers and size during summer and fall (autumn). The strongest relationship between the Palmer Drought Severity Index and burned area was found for the southern climatic districts for the summer–fall season.


Sign in / Sign up

Export Citation Format

Share Document