Comparison with Experiment

1999 ◽  
pp. 177-179
1957 ◽  
Vol 35 (1) ◽  
pp. 21-37 ◽  
Author(s):  
J. D. Jackson

The Monte Carlo calculations of McManus and Sharp (unpublished) for the prompt nuclear processes occurring upon bombardment of heavy elements by 400 Mev. protons are combined with a description of the subsequent neutron evaporation to determine spallation cross sections for comparison with experiment. The model employed is a schematic one which suppresses the detailed characteristics of individual nuclei, but gives the over-all behavior to be expected. Many-particle and collective effects such as alpha particle emission and fission are ignored. The computed cross sections are presented in a variety of different graphical forms which illustrate quantitatively the qualitative picture of high energy reactions first given by Serber (1947). The calculations are in general agreement with existing data when fission is not an important effect, but the agreement does not imply a very stringent test of the various features of the model.


Author(s):  
Jun Tang ◽  
Yongming Shen

Coastal vegetation can not only provide shade to coastal structures but also reduce wave run-up. Study of long water wave climb on vegetation beach is fundamental to understanding that how wave run-up may be reduced by planted vegetation along coastline. The present study investigates wave period influence on long wave run-up on a partially-vegetated plane slope via numerical simulation. The numerical model is based on an implementation of Morison’s formulation for rigid structures induced inertia and drag stresses in the nonlinear shallow water equations. The numerical scheme is validated by comparison with experiment results. The model is then applied to investigate long wave with diverse periods propagating and run-up on a partially-vegetated 1:20 plane slope, and the sensitivity of run-up to wave period is investigated based on the numerical results.


1975 ◽  
Vol 12 (7) ◽  
pp. 619-620
Author(s):  
M. R. Brashears ◽  
James N. Hallock

1982 ◽  
Vol 60 (6) ◽  
pp. 730-734 ◽  
Author(s):  
Russell J. Boyd ◽  
Jeffrey P. Szabo

Abinitio molecular orbital calculations are reported for several cyclic and acyclic sulfones. The geometries of XSO2Y, where X, Y = H, F, or CH3 are optimized at the STO-3G* level. Similar calculations are reported for the smallest cyclic sulfone, thiirane-1,1 -dioxide, as well as the corresponding sulfoxide, thiirane-1-oxide, and the parent sulfide, thiirane. Where comparison with experiment is possible, the agreement is satisfactory. In order to consider the possibility of substantial differences between axial and equatorial S—O bonds in the gas phase, as observed in the crystal structure of 5H,8H-dibenzo[d,f][1,2]-dithiocin-1,1-dioxide, STO-3G* calculations are reported for a six-membered ring, thiane-1,1-dioxide, and a model eight-membered ring. Limited geometry optimization of the axial and equatorial S—O bonds in the chair conformations of the six- and eight-membered rings leads to bond lengths of 1.46 Å with the difference being less than 0.01 Å.


Sign in / Sign up

Export Citation Format

Share Document