Rate Constants, Barriers, and Brønsted Slopes, Electron Transfer at Electrodes and in Solution: Theory versus Experiment—Electrode Reactions of Organic Compounds

1997 ◽  
Vol 119 (25) ◽  
pp. 5900-5907 ◽  
Author(s):  
Stephen F. Nelsen ◽  
Michael T. Ramm ◽  
Rustem F. Ismagilov ◽  
Mark A. Nagy ◽  
Dwight A. Trieber ◽  
...  

1999 ◽  
Vol 64 (4) ◽  
pp. 585-594 ◽  
Author(s):  
Barbara Marczewska

The acceleration effect of p-toluidine on the electroreduction of Zn(II) on the mercury electrode surface in binary mixtures water-methanol and water-dimethylformamide is discussed. The obtained apparent and true forward rate constants of Zn(II) reduction indicate that the rate constant of the first electron transfer increases in the presence of p-toluidine. The acceleration effect may probably be accounted for by the concept of the formation on the mercury electrode an activated complex, presumably composed of p-toluidine and solvent molecules.


Author(s):  
Lars Mohrhusen ◽  
Jessica Kräuter ◽  
Katharina Al-Shamery

The photochemical conversion of organic compounds on tailored transition metal oxide surfaces by (UV) irradiation has found wide applications ranging from the production of chemicals to the degradation of organic...


2014 ◽  
Vol 59 (1) ◽  
pp. 2252-2259 ◽  
Author(s):  
ZHEN CHEN ◽  
XINLIANG YU ◽  
XIANWEI HUANG ◽  
SHIHUA ZHANG

2006 ◽  
Vol 110 (39) ◽  
pp. 19433-19442 ◽  
Author(s):  
William J. Royea ◽  
Thomas W. Hamann ◽  
Bruce S. Brunschwig ◽  
Nathan S. Lewis

2007 ◽  
Vol 11 (03) ◽  
pp. 205-211 ◽  
Author(s):  
László Kálmán ◽  
Arlene L. M. Haffa ◽  
JoAnn C. Williams ◽  
Neal W. Woodbury ◽  
James P. Allen

The rates of electron transfer from ferrocene to the oxidized bacteriochlorophyll dimer, P , in reaction centers from the purple photosynthetic bacterium Rhodobacter sphaeroides, were measured for a series of mutants in which the P / P + midpoint potentials range from 410 to 765 mV (Lin et al. Proc. Natl. Acad. Sci. USA 1994; 91: 10265-10269). The observed rate constant for each mutant was found to be linearly dependent upon the ferrocene concentration up to 50 μM. The electron transfer is described as a second order reaction with rate constants increasing from 1.5 to 35 × 106 M -1. s -1 with increasing P / P + midpoint potential. This dependence was tested for three additional mutants, each of which exhibits a pH dependence of the P / P + midpoint potential due to an electrostatic interaction with an introduced carboxylic group (Williams et al. Biochemistry 2001; 40: 15403-15407). For these mutants, the pH dependence of the bimolecular rate constants followed a sigmoidal pattern that could be described with a Henderson-Hasselbalch equation, attributable to the change of the free energy difference for the reaction due to deprotonation of the introduced carboxylic side chains.


Sign in / Sign up

Export Citation Format

Share Document