oxidation of organic compounds
Recently Published Documents


TOTAL DOCUMENTS

502
(FIVE YEARS 31)

H-INDEX

52
(FIVE YEARS 4)

2021 ◽  
Vol 22 (11) ◽  
pp. 5477
Author(s):  
Semyon Mareev ◽  
Ekaterina Skolotneva ◽  
Marc Cretin ◽  
Victor Nikonenko

The use of reactive electrochemical membranes (REM) in flow-through mode during the anodic oxidation of organic compounds makes it possible to overcome the limitations of plate anodes: in the case of REM, the area of the electrochemically active surface is several orders of magnitude larger, and the delivery of organic compounds to the reaction zone is controlled by convective flow rather than diffusion. The main problem with REM is the formation of fouling and gas bubbles in the pores, which leads to a decrease in the efficiency of the process because the hydraulic resistance increases and the electrochemically active surface is shielded. This work aims to study the processes underlying the reduction in the efficiency of anodic oxidation, and in particular the formation of gas bubbles and the recharge of the REM pore surface at a current density exceeding the limiting kinetic value. We propose a simple one-dimensional non-stationary model of the transport of diluted species during the anodic oxidation of paracetamol using REM to describe the above effects. The processing of the experimental data was carried out. It was found that the absolute value of the zeta potential of the pore surface decreases with time, which leads to a decrease in the permeate flux due to a reduction in the electroosmotic flow. It was shown that in the solution that does not contain organic components, gas bubbles form faster and occupy a larger pore fraction than in the case of the presence of paracetamol; with an increase in the paracetamol concentration, the gas fraction decreases. This behavior is due to a decrease in the generation of oxygen during the recombination reaction of the hydroxyl radicals, which are consumed in the oxidation reaction of the organic compounds. Because the presence of bubbles increases the hydraulic resistance, the residence time of paracetamol—and consequently its degradation degree—increases, but the productivity goes down. The model has predictive power and, after simple calibration, can be used to predict the performance of REM anodic oxidation systems.


Catalysts ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 186
Author(s):  
Georgiy B. Shul’pin ◽  
Lidia S. Shul’pina

The review describes articles that provide data on the synthesis and study of the properties of catalysts for the oxidation of alkanes, olefins, and alcohols. These catalysts are polynuclear complexes of iron, copper, osmium, nickel, manganese, cobalt, vanadium. Such complexes for example are: [Fe2(HPTB)(m-OH)(NO3)2](NO3)2·CH3OH·2H2O, where HPTB-¼N,N,N0,N0-tetrakis(2-benzimidazolylmethyl)-2-hydroxo-1,3-diaminopropane; complex [(PhSiO1,5)6]2[CuO]4[NaO0.5]4[dppmO2]2, where dppm-1,1-bis(diphenylphosphino)methane; (2,3-η-1,4-diphenylbut-2-en-1,4-dione)undecacarbonyl triangulotriosmium; phenylsilsesquioxane [(PhSiO1.5)10(CoO)5(NaOH)]; bi- and tri-nuclear oxidovanadium(V) complexes [{VO(OEt)(EtOH)}2(L2)] and [{VO(OMe)(H2O)}3(L3)]·2H2O (L2 = bis(2-hydroxybenzylidene)terephthalohydrazide and L3 = tris(2-hydroxybenzylidene)benzene-1,3,5-tricarbohydrazide); [Mn2L2O3][PF6]2 (L = 1,4,7-trimethyl-1,4,7-triazacyclononane). For comparison, articles are introduced describing catalysts for the oxidation of alkanes and alcohols with peroxides, which are simple metal salts or mononuclear metal complexes. In many cases, polynuclear complexes exhibit higher activity compared to mononuclear complexes and exhibit increased regioselectivity, for example, in the oxidation of linear alkanes. The review contains a description of some of the mechanisms of catalytic reactions. Additionally presented are articles comparing the rates of oxidation of solvents and substrates under oxidizing conditions for various catalyst structures, which allows researchers to conclude about the nature of the oxidizing species. This review is focused on recent works, as well as review articles and own original studies of the authors.


Author(s):  
Y. Moroz ◽  
M. Lozynskyy ◽  
A. Lopanov ◽  
K. Chebyshev ◽  
V. Burkhovetsky

The article deals with the synthesis, study of thermal decomposition and identification of the thermolysis products of cesium tungstophosphates that are promising compounds in the field of materials science, catalysis and other fields of science and technology. Compounds with the Keggin anion structure are synthesized from aqueous solutions: Cs3[PW12O40] ∙ 9H2O; Cs5Na2[PW11O39(H2O)] ∙ 5H2O and Cs5[PW11O39Ni0,5Cu0,5(H2O)] ∙ 4H2O. The processes of their thermal decomposition are investigated and some regularities of their thermolysis are established. Thermolysis products are identified: Cs3PW12O40, phases with the structure of pyrochlore and hexagonal tungsten bronze of the composition Cs10/13Na4/13P2/13W22/13O6 and Cs10/13P2/13Ni1/13Cu1/13W22/13O6. The unit cell parameters of the phase with the pyrochlore structure are determined. Research results confirm that phosphorus, nickel and copper ions are included in the structure of pyrochlore and hexagonal tungsten bronze. Phases similar to this chemical composition are not previously known in the literature. The studied tungstophosphates and their thermolysis products are promising compounds for obtaining heterogeneous catalysts for the oxidation of organic compounds and selective sorbents. The research results can be useful for predicting the thermal properties and phase composition of thermolysis products of similar polyoxometallates in order to obtain new compounds with the structure of pyrochlore and hexagonal tungsten bronze, as well as composite materials based on them.


Author(s):  
Chechia Hu ◽  
Yi-Chan Hung ◽  
Pin-Yo Tseng ◽  
Zhen-Jie Yang ◽  
Yi-Feng Lin ◽  
...  

Metal species deposited on catalyst supports play a significant role during the catalytic reduction or oxidation of organic compounds. In this study, we successfully prepared Ag- and Cu-supported Fe3O4 aerogels...


2020 ◽  
Vol 69 (9) ◽  
pp. 1679-1691
Author(s):  
Yu. Z. Martynova ◽  
V. R. Khairullina ◽  
R. N. Nasretdinova ◽  
G. G. Garifullina ◽  
D. S. Mitsukova ◽  
...  

2020 ◽  
Vol 119 ◽  
pp. 108040
Author(s):  
Mengting Zheng ◽  
Chao Xing ◽  
Weiping Zhang ◽  
Zhiliang Cheng ◽  
Xianhu Liu ◽  
...  

2020 ◽  
Vol 604 ◽  
pp. 117786
Author(s):  
Zinaida P. Pai ◽  
Yuriy A. Chesalov ◽  
Polina V. Berdnikova ◽  
Evgeny A. Uslamin ◽  
Dmitry Yu. Yushchenko ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document