IMPORTANCE SAMPLING FOR DYNAMIC SYSTEMS BY APPROXIMATE CALCULATION OF THE OPTIMAL CONTROL FUNCTION

Author(s):  
ANNA IVANOVA OLSEN ◽  
ARVID NAESS
2017 ◽  
Vol 17 (03) ◽  
pp. 1750039 ◽  
Author(s):  
Kenan Yildirim ◽  
Seda G. Korpeoglu ◽  
Ismail Kucuk

Optimal boundary control for damping the vibrations in a Mindlin-type beam is considered. Wellposedness and controllability of the system are investigated. A maximum principle is introduced and optimal control function is obtained by means of maximum principle. Also, by using maximum principle, control problem is reduced to solving a system of partial differential equations including state, adjoint variables, which are subject to initial, boundary and terminal conditions. The solution of the system is obtained by using MATLAB. Numerical results are presented in table and graphical forms.


2013 ◽  
Vol 23 (05) ◽  
pp. 1350083 ◽  
Author(s):  
YONGPING ZHANG

The dynamical and fractal behaviors of the complex perturbed rational maps [Formula: see text] are discussed in this paper. And the optimal control function method is taken on the Julia set of this system. In this control method, infinity is regarded as a fixed point to be controlled. By substituting the driving item for an item in the optimal control function, synchronization of Julia sets of two such different systems is also studied.


2017 ◽  
Vol 15 (1) ◽  
pp. 179-186
Author(s):  
Kenan Yildirim ◽  
Ismail Kucuk

Abstract In this paper, an optimal vibration control problem for a nonlinear plate is considered. In order to obtain the optimal control function, wellposedness and controllability of the nonlinear system is investigated. The performance index functional of the system, to be minimized by minimum level of control, is chosen as the sum of the quadratic 10 functional of the displacement. The velocity of the plate and quadratic functional of the control function is added to the performance index functional as a penalty term. By using a maximum principle, the nonlinear control problem is transformed to solving a system of partial differential equations including state and adjoint variables linked by initial-boundary-terminal conditions. Hence, it is shown that optimal control of the nonlinear systems can be obtained without linearization of the nonlinear term and optimal control function can be obtained analytically for nonlinear systems without linearization.


2013 ◽  
Vol 136 (1) ◽  
Author(s):  
Ui-Jin Jung ◽  
Gyung-Jin Park ◽  
Sunil K. Agrawal

Control problems in dynamic systems require an optimal selection of input trajectories and system parameters. In this paper, a novel procedure for optimization of a linear dynamic system is proposed that simultaneously solves the parameter design problem and the optimal control problem using a specific system state transformation. Also, the proposed procedure includes structural design constraints within the control system. A direct optimal control method is also examined to compare it with the proposed method. The limitations and advantages of both methods are discussed in terms of the number of states and inputs. Consequently, linear dynamic system examples are optimized under various constraints and the merits of the proposed method are examined.


Sign in / Sign up

Export Citation Format

Share Document