STRONGLY EVENTUALLY INVERSE SEMIGROUPS WHOSE LATTICE OF FULL EVENTUALLY INVERSE SUBSEMIGROUPS FORM A CHAIN

Author(s):  
Z. J. TIAN ◽  
K. M. YAN
1981 ◽  
Vol 22 (2) ◽  
pp. 159-165 ◽  
Author(s):  
P. R. Jones

The structure of semigroups whose subsemigroups form a chain under inclusion was determined by Tamura [9]. If we consider the analogous problem for inverse semigroups it is immediate that (since idempotents are singleton inverse subsemigroups) any inverse semigroup whose inverse subsemigroups form a chain is a group. We will therefore, continuing the approach of [5, 6], consider inverse semigroups whose full inverse subsemigroups form a chain: we call these inverse ▽-semigroups.


2008 ◽  
Vol 01 (03) ◽  
pp. 359-367 ◽  
Author(s):  
Xiaojiang Guo ◽  
Fusheng Huang ◽  
K. P. Shum

A semigroup S is called a ∇-semigroup if the set of all its full subsemigroups forms a chain under set inclusion. In this paper, we investigate some properties of such kind of semigroups and establish several characterization theorems of type-A ∇-semigroups. Our theorems generalize the known results of P. R. Jones obtained in 1981 on inverse semigroups whose full inverse subsemigroups form a chain.


Author(s):  
Katherine G. Johnston ◽  
Peter R. Jones ◽  
T. E. Hall

AbstractAn inverse semigroup S is said to be modular if its lattice 𝓛𝓕 (S) of inverse subsemigroups is modular. We show that it is sufficient to study simple inverse semigroups which are not groups. Our main theorem states that such a semigroup S is modular if and only if (I) S is combinatorial, (II) its semilattice E of idempotents is “Archimedean” in S, (III) its maximum group homomorphic image G is locally cyclic and (IV) the poset of idempotents of each 𝓓-class of S is either a chain or contains exactly one pair of incomparable elements, each of which is maximal. Thus in view of earlier results of the second author a simple modular inverse semigroup is “almost” distributive. The bisimple modular inverse semigroups are explicitly constructed. It is remarkable that exactly one of these is nondistributive.


2003 ◽  
Vol 49 (1) ◽  
pp. 51-80 ◽  
Author(s):  
Kyeong Hee Cheong ◽  
Peter R. Jones

2016 ◽  
Vol 09 (01) ◽  
pp. 1650042
Author(s):  
Somnuek Worawiset

We classify the maximal Clifford inverse subsemigroups [Formula: see text] of the full transformation semigroup [Formula: see text] on an [Formula: see text]-element set with [Formula: see text] for all [Formula: see text]. This classification differs from the already known classifications of Clifford inverse semigroups, it provides an algorithm for its construction. For a given natural number [Formula: see text], we find also the largest size of an inverse subsemigroup [Formula: see text] of [Formula: see text] satisfying [Formula: see text] with least rank [Formula: see text] for any element in [Formula: see text].


1991 ◽  
Vol 43 (3) ◽  
pp. 463-466 ◽  
Author(s):  
S.M. Goberstein

Shortly connected and shortly linked inverse semigroups arise in the study of inverse semigroups determined by the lattices of inverse subsemigroups and by the partial automorphism semigroups. It has been shown that every shortly linked inverse semigroup is shortly connected, but the question of whether the converse is true has not been addressed. Here we construct two examples of combinatorial shortly connected inverse semigroups which are not shortly linked. One of them is completely semisimple while the other is not.


2018 ◽  
Vol 28 (05) ◽  
pp. 837-875 ◽  
Author(s):  
Thomas Quinn-Gregson

An inverse semigroup [Formula: see text] is a semigroup in which every element has a unique inverse in the sense of semigroup theory, that is, if [Formula: see text] then there exists a unique [Formula: see text] such that [Formula: see text] and [Formula: see text]. We say that a countable inverse semigroup [Formula: see text] is a homogeneous (inverse) semigroup if any isomorphism between finitely generated (inverse) subsemigroups of [Formula: see text] extends to an automorphism of [Formula: see text]. In this paper, we consider both these concepts of homogeneity for inverse semigroups, and show when they are equivalent. We also obtain certain classifications of homogeneous inverse semigroups, in particular periodic commutative inverse semigroups. Our results may be seen as extending both the classification of homogeneous semilattices and the classification of certain classes of homogeneous groups, such as homogeneous abelian groups and homogeneous finite groups.


Author(s):  
P. R. Jones

AbstractIn a previous paper ([14]) the author showed that a free inverse semigroup is determined by its lattice of inverse subsemigroups, in the sense that for any inverse semigroup T, implies . (In fact, the lattice isomorphism is induced by an isomorphism of upon T.) In this paper the results leading up to that theorem are generalized (from completely semisimple to arbitrary inverse semigroups) and applied to various classes, including simple, fundamental and E-unitary inverse semigroups. In particular it is shown that the free product of two groups in the category of inverse semigroups is determined by its lattice of inverse subsemigroups.


Sign in / Sign up

Export Citation Format

Share Document