scholarly journals EVIDENCE FOR COMPACT DARK MATTER IN GALACTIC HALOS

Author(s):  
AFSAR ABBAS
Keyword(s):  
Galaxies ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 77
Author(s):  
Anne M. Hofmeister

To explain rotation curves of spiral galaxies through Newtonian orbital models, massive halos of non-baryonic dark matter (NBDM) are commonly invoked. The postulated properties are that NBDM interacts gravitationally with baryonic matter, yet negligibly interacts with photons. Since halos are large, low-density gaseous bodies, their postulated attributes can be tested against classical thermodynamics and the kinetic theory of gas. Macroscopic models are appropriate because these make few assumptions. NBDM–NBDM collisions must be elastic to avoid the generation of light, but this does not permit halo gas temperature to evolve. If no such collisions exist, then the impossible limit of absolute zero would be attainable since the other available energy source, radiation, does not provide energy to NBDM. The alternative possibility, an undefined temperature, is also inconsistent with basic thermodynamic principles. However, a definable temperature could be attained via collisions with baryons in the intergalactic medium since these deliver kinetic energy to NBDM. In this case, light would be produced since some proportion of baryon collisions are inelastic, thereby rendering the halo detectable. Collisions with baryons are unavoidable, even if NBDM particles are essentially point masses. Note that <0.0001 × the size of a proton is needed to avoid scattering with γ-rays, the shortest wavelength used to study halos. If only elastic collisions exist, NBDM gas would collapse to a tiny, dense volume (zero volume for point masses) during a disturbance—e.g., cosmic rays. NBDM gas should occupy central galactic regions, not halos, since self-gravitating objects are density stratified. In summary, properties of NBDM halos as postulated would result in violations of thermodynamic laws and in a universe unlike that observed.


1988 ◽  
Vol 130 ◽  
pp. 259-271
Author(s):  
Carlos S. Frenk

Modern N-body techniques allow the study of galaxy formation in the wider context of the formation of large-scale structure in the Universe. The results of such a study within the cold dark matter cosmogony are described. Dark galactic halos form at relatively recent epochs. Their properties and abundance are similar to those inferred for the halos of real galaxies. Massive halos tend to form preferentially in high density regions and as a result the galaxies that form within them are significantly more clustered than the underlying mass. This natural bias may be strong enough to reconcile the observed clustering of galaxies with the assumption that Ω = 1.


1999 ◽  
Vol 183 ◽  
pp. 155-155
Author(s):  
Toshiyuki Fukushige ◽  
Junichiro Makino

We performed N-body simulation on special-purpose computer, GRAPE-4, to investigate the structure of dark matter halos (Fukushige, T. and Makino, J. 1997, ApJL, 477, L9). Universal profile proposed by Navarro, Frenk, and White (1996, ApJ, 462, 563), which has cusp with density profiles ρ ∝r−1in density profile, cannot be reproduced in the standard Cold Dark Matter (CDM) picture of hierarchical clustering. Previous claims to the contrary were based on simulations with relatively few particles, and substantial softening. We performed simulations with particle numbers an order of magnitude higher, and essentially no softening, and found that typical central density profiles are clearly steeper than ρ ∝r−1, as shown in Figure 1. In addition, we confirm the presence of a temperature inversion in the inner 5 kpc of massive galactic halos, and give a natural explanation for formation of the temperature structure.


Recent observational and theoretical results on galaxy clustering are reviewed. A major difficulty in relating observations to theory is that the former refer to luminous material whereas the latter is most directly concerned with the gravitationally dominant but invisible dark matter. The simple assumption that the distribution of galaxies generally follows that of the mass appears to conflict with evidence suggesting that galaxies of different kinds are clustered in different ways. If galaxies are indeed biased tracers of the mass, then dynamical estimates of the mean cosmic density, which give Ω « 0.2 may underestimate the global value of Ω. There are now several specific models for the behaviour of density fluctuations from very early times to the present epoch. The late phases of this evolution need to be followed by N -body techniques; simulations of scale-free universes and of universes dominated by various types of elementary particles are discussed. In the former case, the models evolve in a self-similar way; the resulting correlations have a steeper slope than that oberved for the galaxy distribution unless the primordial power spectral index n « 2. Universes dominated by light neutrinos acquire a large coherence length at early times. As a result, an early filamentary phase develops into a present day distribution that is more strongly clustered than observed galaxies and is dominated by a few clumps with masses larger than those of any known object. If the dark matter consists of ‘cold’ particles such as photinos or axions, then structure builds up from subgalactic scales in a roughly hierarchical way. The observed pattern of galaxy clustering can be reproduced if either Ω « 0.2 and the galaxies are distributed as the mass, or if Ω — 1, H 0 = 50 km s -1 Mpc -1 and the galaxies form only at high peaks of the smoothed linear density field. The open model, however, is marginally ruled out by the observed small-scale isotropy of the microwave background, whereas the flat one is consistent with such observations. With no further free parameters a flat cold dark-matter universe produces the correct abundance of rich galaxy clusters and of galactic halos; the latter have flat rotation curves with amplitudes spanning the observed range. Preliminary calculations indicate that the properties of voids may be consistent with the data, but the correlations of rich clusters appear to be somewhat weaker than those reported for Abell clusters.


2019 ◽  
Vol 34 (16) ◽  
pp. 1950126 ◽  
Author(s):  
S. H. Pereira ◽  
Richard S. Costa

This work studies the finite temperature effects of a mass dimension one fermionic field, sometimes called Elko field. The equilibrium partition function was calculated by means of the imaginary time formalism and the result obtained was the same for a Dirac fermionic field, even though the Elko field does not satisfy a Dirac-like equation. The high and low temperature limits were obtained, and for the last case the degeneracy pressure due to Pauli exclusion principle can be responsible for the dark matter halos around galaxies to be greater than or of the same order of the galaxy radius. Also, for a light particle of about 1.0 eV and a density of just 1 particle per cubic centimeter, the value of the total dark matter mass due to Elko particles is of the same order of a typical galaxy. Such a result satisfactorily explains the dark matter as being formed just by Elko fermionic particles and also the existence of galactic halos that go beyond the observable limit.


1998 ◽  
Author(s):  
James J. Bock ◽  
Mitsunobu Kawada ◽  
Andrew E. Lange ◽  
Toshio Matsumoto ◽  
Kazunori Uemizu ◽  
...  

2005 ◽  
Vol 628 (1) ◽  
pp. 21-44 ◽  
Author(s):  
Sanjib Sharma ◽  
Matthias Steinmetz

2015 ◽  
Vol 361 (1) ◽  
Author(s):  
Farook Rahaman ◽  
G. C. Shit ◽  
Banashree Sen ◽  
Saibal Ray
Keyword(s):  

2014 ◽  
Vol 29 (02) ◽  
pp. 1430002 ◽  
Author(s):  
TANJA RINDLER-DALLER ◽  
PAUL R. SHAPIRO

The nature of the cosmological dark matter (DM) remains elusive. Recent studies have advocated the possibility that DM could be composed of ultra-light, self-interacting bosons, forming a Bose–Einstein condensate (BEC) in the very early Universe. We consider models which are charged under a global U(1)-symmetry such that the DM number is conserved. It can then be described as a classical complex scalar field which evolves in an expanding Universe. We present a brief review on the bounds on the model parameters from cosmological and galactic observations, along with the properties of galactic halos which result from such a DM candidate.


Sign in / Sign up

Export Citation Format

Share Document